Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3431 results about "Lipid formation" patented technology

A biological membrane is a form of lamellar phase lipid bilayer. The formation of lipid bilayers is an energetically preferred process when the glycerophospholipids described above are in an aqueous environment. This is known as the hydrophobic effect.

Lipid encapsulated interfering RNA

The present invention provides lipid-based formulations for delivering, e.g., introducing, nucleic acid-lipid particles comprising an interference RNA molecule to a cell, and assays for optimizing the delivery efficiency of such lipid-based formulations.
Owner:ARBUTUS BIOPHARMA CORPORAT ION

Potentiation of immune responses with liposomal adjuvants

A high integrity liposome comprising at least one stabile lipid and at least one peptide-like therapeutic agent associated with said liposome, adapted for parenteral administration to an animal, including a human, and method according to manufacture and use. Immunizing dosage forms comprising a liposome and an immunogen, wherein said liposome and immunogen are present in an immunization dose. Additionally, a dosage form, including such form particularly adapted to producing an immune response, comprising a salt according to an organic acid derivative of a sterol and an immunogen wherein said organic acid derivative of a sterol and immunogen are present in an immunization dose, and method according to use is disclosed. Further, a dosage form, including such form particularly adapted to producing an immune response, comprising dimyristoylphosphatidylcholine (DMPC) / cholesterol liposomes, optionally in an aluminum hydroxide gel, and an immunogen wherein said DMPC / cholesterol and immunogen are present in an immunization dose, and method according to use.
Owner:TRANSAVE

Modified siRNA molecules and uses thereof

ActiveUS20070135372A1Decrease immunostimulatory propertyImmunostimulatory activity of siRNA can be abolishedOrganic active ingredientsSugar derivativesLipid formationLipid particle
The present invention provides chemically modified siRNA molecules and methods of using such siRNA molecules to silence target gene expression. Advantageously, the modified siRNA of the present invention is less immunostimulatory than its corresponding unmodified siRNA sequence and retains RNAi activity against the target sequence. The present invention also provides nucleic acid-lipid particles comprising a modified siRNA, a cationic lipid, and a non-cationic lipid, which can further comprise a conjugated lipid that inhibits aggregation of particles. The present invention further provides methods of silencing gene expression by administering a modified siRNA to a mammalian subject. Methods for identifying and / or modifying an siRNA having immunostimulatory properties are also provided.
Owner:ARBUTUS BIOPHARMA CORPORAT ION

Amperometric biosensors based on redox enzymes

The invention includes various prototypical amperometric biosensors for the quantification of biological substrates such as fructose, creatinine, creatine, and sarcosine, and the methods for producing these biosensors. Also included in the invention is a minaturized version of the biosensing devices. The components of these prototypical biosensors are immobilized on a self-assembled monolayer (SAM) comprising chemisorbed alkanethiols. The deposition of an amphiphilic lipid layer to these systems increases the stability and activity of the resultant biosensor and enhances the rejection of many interferents. An additional feature of the invention is the co-deposition of the components of the sensor via a novel detergent dialysis protocol. The invention features two particular biosensor systems. One embodiment involves fructose dehydrogenase as the redox / sensor enzyme and fructose as the substrate / analyte. Another embodiment involves the measurement of the substrates / analytes, creatinine, creatine and sarcosine, using sacrosine dehydrogenase as the redox / sensor enzyme, with the involvement of creatinine amidohydrolase and / or creatine amidinohydrolase in the reaction pathway.
Owner:MONBOUQUETTE HAROLD G

Systems and methods for manufacturing liposomes

The present invention provides apparatus and processes for producing liposomes. By providing a buffer solution in a first reservoir, and a lipid solution in a second reservoir, continuously diluting the lipid solution with the buffer solution in a mixing chamber produces a liposome. A therapeutic agent, such as nucleic acid, is included in one of the buffer solution or the lipid solution. Upon mixing a liposome encapsulating the therapeutic product is substantially instantaneously formed. Thereafter the liposome solution formed is immediately diluted with buffer solution to enhance homogeneity and maintain small particle size.
Owner:ARBUTUS BIOPHARMA CORPORAT ION

Lipid compositions

Disclosed herein are lipid compositions comprising a cationic lipid of formula (I), a neutral lipid, a sterol and a PEG or PEG-modified lipid, wherein formula (I) is (F). Also disclosed are methods of producing the cationic lipid of formula (I).
Owner:ARBUTUS BIOPHARMA CORPORAT ION

Liposomal apparatus and manufacturing methods

The present invention provides apparatus and processes for producing liposomes. By providing a buffer solution in a first reservoir, and a lipid solution in a second reservoir, continuously diluting the lipid solution with the buffer solution in a mixing chamber produces a liposome. The lipid solution preferably comprises an organic solvent, such as a lower alkanol.
Owner:ARBUTUS BIOPHARMA CORPORAT ION

Method and apparatus for the selective targeting of lipid-rich tissues

A method and apparatus are provided for targeting lipid-rich tissue to effect a desired, the method / apparatus involving irradiating the lipid-rich tissue with energy at a wavelength preferentially absorbed by lipid cells, such wavelength being preferably in a band between 880 nm and 935 nm, 1150 nm and 1230 nm, 1690 nm to 1780 nm, or 2250 nm to 2450 nm with a fluence and duration sufficient to achieve a desired treatment. For preferred embodiments, the irradiation wavelength is between 900–930 nm, 1190–1220 nm, 1700–1730 nm, or 2280–2350 nm. The method and apparatus may for example be used to target one or more sebaceous glands for the treatment of acne or hair removal, to target subcutaneous fat for removal thereof or for targeting fat on anatomical elements for various purposes.
Owner:PALOMAR MEDICAL TECH

Lipid nanoparticle based compositions and methods for the delivery of biologically active molecules

The present invention relates to novel cationic lipids, transfection agents, microparticles, nanoparticles, and short interfering nucleic acid (siNA) molecules. The invention also features compositions, and methods of use for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of gene expression and / or activity in a subject or organism. Specifically, the invention relates to novel cationic lipids, microparticles, nanoparticles and transfection agents that effectively transfect or deliver biologically active molecules, such as antibodies (e.g., monoclonal, chimeric, humanized etc.), cholesterol, hormones, antivirals, peptides, proteins, chemotherapeutics, small molecules, vitamins, co-factors, nucleosides, nucleotides, oligonucleotides, enzymatic nucleic acids, antisense nucleic acids, triplex forming oligonucleotides, 2,5-A chimeras, dsRNA, allozymes, aptamers, decoys and analogs thereof, and small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), short hairpin RNA (shRNA), and RNAi inhibitor molecules, to relevant cells and / or tissues, such as in a subject or organism. Such novel cationic lipids, microparticles, nanoparticles and transfection agents are useful, for example, in providing compositions to prevent, inhibit, or treat diseases, conditions, or traits in a cell, subject or organism. The compositions described herein are generally referred to as formulated molecular compositions (FMC) or lipid nanoparticles (LNP).
Owner:SIRNA THERAPEUTICS INC

Lipid nanoparticle based compositions and methods for the delivery of biologically active molecules

The present invention relates to novel cationic lipids, transfection agents, microparticles, nanoparticles, and short interfering nucleic acid (siNA) molecules. The invention also features compositions, and methods of use for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of gene expression and / or activity in a subject or organism. Specifically, the invention relates to novel cationic lipids, microparticles, nanoparticles and transfection agents that effectively transfect or deliver biologically active molecules, such as antibodies (e.g., monoclonal, chimeric, humanized etc.), cholesterol, hormones, antivirals, peptides, proteins, chemotherapeutics, small molecules, vitamins, co-factors, nucleosides, nucleotides, oligonucleotides, enzymatic nucleic acids, antisense nucleic acids, triplex forming oligonucleotides, 2,5-A chimeras, dsRNA, allozymes, aptamers, decoys and analogs thereof, and small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules, to relevant cells and / or tissues, such as in a subject or organism. Such novel cationic lipids, microparticles, nanoparticles and transfection agents are useful, for example, in providing compositions to prevent, inhibit, or treat diseases, conditions, or traits in a cell, subject or organism. The compositions described herein are generally referred to as formulated molecular compositions (FMC) or lipid nanoparticles (LNP).
Owner:SIRNA THERAPEUTICS INC

Lipid metabolism regulators in plants

The present invention is directed to novel nucleic acid and amino acid sequences associated with the metabolism of seed storage compounds in plants. A novel discovery described herein lies in the identification of the nucleic acid sequences that encode the wri1 genetic locus in Arabidopsis thaliana, and lipid metabolism regulator (LMR) polynucleotide sequences contained therein. Preferably, the seed storage compounds are lipids, fatty acids, starches or seed storage proteins.
Owner:BOARD OF TRUSTEES OPERATING MICHIGAN STATE UNIV

Cationic lipids and methods for the delivery of therapeutic agents

The present invention provides compositions and methods for the delivery of therapeutic agents to cells. In particular, these include novel cationic lipids and nucleic acid-lipid particles that provide efficient encapsulation of nucleic acids and efficient delivery of the encapsulated nucleic acid to cells in vivo. The compositions of the present invention are highly potent, thereby allowing effective knock-down of a specific target protein at relatively low doses. In addition, the compositions and methods of the present invention are less toxic and provide a greater therapeutic index compared to compositions and methods previously known in the art.
Owner:PROTIVA BIOTHERAPEUTICS

Nanocell drug delivery system

Nanocells allow the sequential delivery of two different therapeutic agents with different modes of action or different pharmacokinetics. A nanocell is formed by encapsulating a nanocore with a first agent inside a lipid vesicle containing a second agent. The agent in the outer lipid compartment is released first and may exert its effect before the agent in the nanocore is released. The nanocell delivery system may be formulated in pharmaceutical composition for delivery to patients suffering from diseases such as cancer, inflammatory diseases such as asthma, autoimmune diseases such as rheumatoid arthritis, infectious diseases, and neurological diseases such as epilepsy. In treating cancer, a traditional antineoplastic agent is contained in the outer lipid vesicle of the nanocell, and an antiangiogenic agent is loaded into the nanocore. This arrangement allows the antineoplastic agent to be released first and delivered to the tumor before the tumor's blood supply is cut off by the antianiogenic agent.
Owner:MASSACHUSETTS INST OF TECH

Device and method for monitoring body fluid and electrolyte disorders

A device and a method for measuring body fluid-related metrics using spectrophotometry to facilitate therapeutic interventions aimed at restoring body fluid balance. The specific body fluid-related metrics include the absolute volume fraction of water in the extravascular and intravascular tissue compartments, as well as the shifts of water between these two compartments. The absolute volume fraction of water is determined using algorithms where received radiation measured at two or more wavelengths are combined to form either a single ratio, a sum of ratios or ratio of ratios of the form log[R(λ1) / R(λ2)] in which the received radiation in the numerator depends primarily on the absorbance of water and the received radiation in the denominator depends primarily on the absorbance of water and the sum of the absorbances of non-heme proteins, lipids and water in tissue. The difference between the fraction of water in the intravascular fluid volume (“IFV”) and extravascular fluid volume (“EFV”) compartments are also determined using a differential method that takes advantage of the observation that pulsations caused by expansion of blood vessels in the skin as the heart beats produce changes in the received radiation at a particular wavelength that are proportional to the difference between the effective absorption of light in the blood and the surrounding tissue. This difference, integrated over time, provides a measure of the quantity of the fluid that shifts into and out of the capillaries. A mechanism for mechanically inducing a pulse is built into the device to improve the reliability of measurements of IFV−EFV under weak-pulse conditions.
Owner:COVIDIEN LP

Nanofibrillar structure and applications including cell and tissue culture

A nanofibrillar structure for cell culture and tissue engineering is disclosed. The nanofibrillar structure can be used in a variety of applications including methods for proliferating and / or differentiating cells and manufacturing a tissue. Also disclosed is an improved nanofiber comprising a lipid, lipophilic molecule, or chemically modified surface. The nanofibers can be used in a variety of applications including the formation of nanofibrillar structures for cell culture and tissue engineering.
Owner:BOARD OF TRUSTEES OPERATING MICHIGAN STATE UNIV

Statin and omega-3 fatty acids for lipid therapy

A method of lipid therapy, comprising providing a subject group having a baseline triglyceride level of 200 to 499 mg / dl and being at or near its low-density lipoprotein cholesterol (LDL-C) level goal, and reducing the triglyceride level and the non-high-density lipoprotein cholesterol (non-HDL-C) level of the subject group as compared to treatment with a 3-hydroxy-3-methyl glutaryl coenzyme A (HMG CoA) inhibitor alone, by administering to the subject group an effective amount of an HMG CoA inhibitor and a composition comprising omega-3 fatty acids.
Owner:RELIANT PHARMACEUTICALS INC +1

Method of preventing aggregation of a lipid:nucleic acid complex

Particle aggregation of lipid:nucleic acid complex particles is prevented by incorporating a non-cationic lipid into lipid:nucleic acid complex particles containing a cationic lipid and a nucleic acid polymer. The non-cationic lipid is a polyethylene glycol-based polymer.
Owner:TEKMIRA PHARMA CORP +1

Nucleic acid-containing lipid particles and related methods

Lipid particles containing a nucleic acid, devices and methods for making the lipid particles, and methods for using the lipid particles.
Owner:THE UNIV OF BRITISH COLUMBIA

Crystalline hydroxy waxes as oil in water stabilizers for skin cleansing liquid composition

InactiveUS6080708ACosmetic preparationsMake-upLipid formationTRIHYDROXYSTEARIN
The present invention relates to a stress stable lathering skin cleansing liquid composition comprising by weight parts of the liquid composition: (a) from about 0.5 parts to 10 parts of a stabilizer; for example trihydroxystearin; (b) from about 1 part to about 80 parts of lipid skin moisturizing agent; (c) from about 1 part to about 30 parts of surfactant having a combined CMC equilibrium surface tension value of from 15 to 50; (d) water; wherein said stress stable lathering skin cleansing liquid composition has a Lipid Deposition Value (LDV) of from about 5 to about 100 and wherein said composition is stable for at least two weeks at 100 F.
Owner:THE PROCTER & GAMBLE COMPANY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products