Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

794 results about "Dendrite" patented technology

Dendrites (from Greek δένδρον déndron, "tree"), also dendrons, are branched protoplasmic extensions of a nerve cell that propagate the electrochemical stimulation. received from other neural cells to the cell body, or soma, of the neuron from which the dendrites project. Electrical stimulation is transmitted onto dendrites by upstream neurons (usually via their axons) via synapses which are located at various points throughout the dendritic tree. Dendrites play a critical role in integrating these synaptic inputs and in determining the extent to which action potentials are produced by the neuron. Dendritic arborization, also known as dendritic branching, is a multi-step biological process by which neurons form new dendritic trees and branches to create new synapses. The morphology of dendrites such as branch density and grouping patterns are highly correlated to the function of the neuron. Malformation of dendrites is also tightly correlated to impaired nervous system function. Some disorders that are associated with the malformation of dendrites are autism, depression, schizophrenia, Down syndrome and anxiety.

Programmable metallization cell structure and method of making same

A programmable metallization cell ("PMC") comprises a fast ion conductor such as a chalcogenide-metal ion and a plurality of electrodes (e.g., an anode and a cathode) disposed at the surface of the fast ion conductor and spaced a set distance apart from each other. Preferably, the fast ion conductor comprises a chalcogenide with Group IB or Group IIB metals, the anode comprises silver, and the cathode comprises aluminum or other conductor. When a voltage is applied to the anode and the cathode, a non-volatile metal dendrite grows from the cathode along the surface of the fast ion conductor towards the anode. The growth rate of the dendrite is a function of the applied voltage and time. The growth of the dendrite may be stopped by removing the voltage and the dendrite may be retracted by reversing the voltage polarity at the anode and cathode. Changes in the length of the dendrite affect the resistance and capacitance of the PMC. The PMC may be incorporated into a variety of technologies such as memory devices, programmable resistor / capacitor devices, optical devices, sensors, and the like. Electrodes additional to the cathode and anode can be provided to serve as outputs or additional outputs of the devices in sensing electrical characteristics which are dependent upon the extent of the dendrite.
Owner:AXON TECH +1

Programmable sub-surface aggregating metallization structure and method of making same

A programmable sub-surface aggregating metallization sructure ("PSAM") includes an ion conductor such as a chalcogenide-glass which includes metal ions and at least two electrodes disposed at opposing surfaces of the ion conductor. Preferably, the ion conductor includes a chalcogenide material with Group IB or Group IIB metals. One of the two electrodes is preferably configured as a cathode and the other as an anode. When a voltage is applied between the anode and cathode, a metal dendrite grows from the cathode through the ion conductor towards the anode. The growth rate of the dendrite may be stopped by removing the voltage or the dendrite may be retracted back towards the cathode by reversing the voltage polarity at the anode and cathode. When a voltage is applied for a sufficient length of time, a continuous metal dendrite grows through the ion conductor and connects the electrodes, thereby shorting the device. The continuous metal dendrite then can be broken by applying another voltage. The break in the metal dendrite can be reclosed by applying yet another voltage. Changes in the length of the dendrite or the presence of a break in the dendrite affect the resistance, capacitance, and impedance of the PSAM.
Owner:THE ARIZONA BOARD OF REGENTS ON BEHALF OF THE UNIV OF ARIZONA +1

Lithium alloy/sulfur batteries

Electrochemical cells including anode compositions that may enhance charge-discharge cycling efficiency and uniformity are presented. In some embodiments, alloys are incorporated into one or more components of an electrochemical cell, which may enhance the performance of the cell. For example, an alloy may be incorporated into an electroactive component of the cell (e.g., electrodes) and may advantageously increase the efficiency of cell performance. Some electrochemical cells (e.g., rechargeable batteries) may undergo a charge / discharge cycle involving deposition of metal (e.g., lithium metal) on the surface of the anode upon charging and reaction of the metal on the anode surface, wherein the metal diffuses from the anode surface, upon discharging. In some cases, the efficiency and uniformity of such processes may affect cell performance. The use of materials such as alloys in an electroactive component of the cell have been found to increase the efficiency of such processes and to increase the cycling lifetime of the cell. For example, the use of alloys may reduce the formation of dendrites on the anode surface and / or limit surface development.
Owner:SION POWER CORP

Compositions and methods for priming monocytic dendritic cells and t cells for th-1response

The present invention provides compositions and methods for inducing maturation of immature dendritic cells (DC) and for priming those cells for inducing a type 1 immune response. The present invention also provides dendritic cell populations useful for activating and for preparing T cells polarized towards production of type 1 cytokines and / or a type 1 response. Similarly, activated, polarized T cell populations, and methods of making the same are provided.
Owner:NORTHWEST BIOTHERAPEUTICS INC

Alkali Metal Secondary Battery Containing a Carbon Matrix- or Carbon Matrix Composite-based Dendrite-Intercepting Layer

A rechargeable alkali metal battery comprising: (a) an anode comprising an alkali metal layer and a dendrite penetration-resistant layer comprising an amorphous carbon or polymeric carbon matrix, an optional carbon or graphite reinforcement phase dispersed in this matrix, and a lithium- or sodium-containing species that are chemically bonded to the matrix and / or the optional carbon or graphite reinforcement to form an integral layer that prevents dendrite penetration, wherein the lithium- or sodium-containing species is selected from Li2CO3, Li2O, Li2C2O4, LiOH, LiX, ROCO2Li, HCOLi, ROLi, (ROCO2Li)2, (CH2OCO2Li)2, Li2S, LixSOy, Na2CO3, Na2O, Na2C2O4, NaOH, NaiX, ROCO2Na, HCONa, RONa, (ROCO2Na)2, (CH2OCO2Na)2, Na2S, NaxSOy, or a combination thereof, wherein X═F, Cl, I, or Br, R=a hydrocarbon group, x=0-1, y=1-4; (b) a cathode; and (c) a separator and electrolyte component; wherein the dendrite penetration-resistant layer is disposed between the alkali metal layer and the separator.
Owner:GLOBAL GRAPHENE GRP INC

Compounds for targeted immunotherapy

Compounds for targeted immunotherapy, compositions comprising the compounds and use of the compounds in the treatment of diseases such as cancer are disclosed. The compounds having the structure of formula TM-Ln-AM, wherein TM is a targeting moiety, AM is an activating moiety that is capable of activating a human dendritic cell, NK cell, or tumor cell, or a combination thereof, Ln is a linker, and n is an integer selected from 0 and 1.
Owner:BIRDIE BIOPHARM INC

Activated carbon, method for production thereof, polarizing electrode and electrical double layer capacitor

In activated carbon obtained by subjecting a carbonaceous material to an activation treatment, the overall content of alkali metals is set at 100 ppm or less, or the overall content of heavy metals is set at 20 ppm or less and the overall content of alkali metals is set at 200 ppm or less. In cases where such activated carbon is used as a raw material in electronic devices, the formation of dendrites by the reductive deposition of alkali metals or heavy metals tends not to occur, so that problems such as short-circuiting or the like tend not to arise, and a good rate of self-discharge retention is shown.
Owner:HONDA MOTOR CO LTD +1

Novel receptor TREM (triggering receptor expressed on myeloid cells) and uses thereof

Novel activating receptors of the Ig super-family expressed on human myeloid cells, called TREM(s) (triggering receptor expressed on myeloid cells) are provided. Specifically, two (2) members of TREMs, TREM-1 and TREM-2 are disclosed. TREM-1 is a transmembrane glycoprotein expressed selectively on blood neutrophils and a subset of monocytes but not on lymphocytes and other cell types and is upregulated by bacterial and fungal products. Use of TREM-1 in treatment and diagnosis of various inflammatory diseases is also provided. TREM-2 is also a transmembrane glycoprotein expressed selectively on mast cells and peripheral dendritic cells (DCs) but not on granulocytes or monocytes. DC stimulation via TREM-2 leads to DC maturation and resistance to apoptosis, and induces strong upregulation of CCR7 and subsequent chemotaxis toward macrophage inflammatory protein 3-beta. TREM-2 has utility in modulating host immune responses in various immune disorders, including autoimmune diseases and allergic disorders.
Owner:BIOXELL

Anode for a secondary battery

An anode for use in a non-aqueous-electrolyte secondary battery includes an active material film for occluding and releasing lithium ions, and an amorphous carbon film or a diamond-like carbon film covering the active material film for suppressing growth of dendrite and degradation of the anode, thereby achieving improved cycle lifetime of the secondary battery.
Owner:NEC CORP

Anode for lithium metal polymer secondary battery comprising surface patterned anodic current collector and method of preparing the same

There are provided an anode for a lithium metal polymer secondary battery comprising an anodic current collector having a surface on which a plurality of recesses having a predetermined shape are formed and a method of preparing the same. The plurality of recesses are formed on a surface of the anodic current collector using a physical method or a chemical method. In a lithium metal polymer secondary battery employing the anode, oxidation / reduction of lithium and the formation of dendrite occur only in the recesses formed by surface patterning of the anodic current collector. Thus, expanding and shrinking of a battery due to a change in the thickness of the lithium anode can be prevented and cycling stability and the lifespan of a battery can be improved.
Owner:ELECTRONICS & TELECOMM RES INST

Nickel zinc battery design

Nickel zinc cylindrical battery cell designs are described. The designs provided limit dendrite formation and prevent build up of hydrogen gas in the cell. The present invention also provides low-impedance cells required by rapid discharge applications. The cylindrical battery cells may have polarity opposite of that of conventional power cells, with a negative cap and positive can. The cylindrical cells may include a gel electrolyte reservoir.
Owner:ZINCFIVE POWER INC

Mature dendritic cell compositions and methods for culturing same

This invention provides methods to prepare and use immunostimulatory cells for enhancing an immune response. The invention provides a method for preparing mature dendritic cells (DCs), comprising the sequential steps of: (a) signaling isolated immature dendritic cells (iDCs) with a first signal comprising an interferon gamma receptor (IFN-γR) agonist and / or a tumor necrosis factor alpha receptor (TNF-αR) agonist to produce signaled dendritic cells; and (b) signaling said signaled dendritic cells with a second transient signal comprising an effective amount of a CD40 agonist to produce CCR7+ mature dendritic cells. Also provided by this invention are enriched populations of dendritic cells prepared by the methods of the invention. Such dendritic cells have enhanced immunostimulatory properties and increased IL-12 secretion and / or decreased IL-10 secretion. CD40 signaling can be initiated by one or more of polypeptide translated from an exogenous polynucleotide encoding CD40L (e.g., mRNA or DNA), an agonistic antibody to CD40 receptor or by CD40 ligand polypeptide. The enriched populations can be further modified by the administration of an immunogen to the DC. The DC will take up and process the immunogen on its cell surface.
Owner:COIMMUNE INC +1

Mature type-1 polarized dendritic cells with enhanced IL-12 production and methods of serum-free production and use

The present invention discloses novel dendritic cell maturation-inducing cytokine cocktails, and methods for inducting type-1 polarized dendritic cells in serum-free conditions which enhance the desirable properties of DC1s generated in serum-supplemented cultures. The invention further discloses methods and systems using IFNγ and other ligands of the IFNγ receptor, in combination with IFNα (or other type I interferons), poly I:C, and other IFNα (and IFNβ) inducers to enhance the IL-12-producing properties of dendritic cells. More specifically, the present invention discloses type-1 polarized dendritic cells that have a unique combination of a fully-mature status and an elevated, instead of “exhausted”, ability to produce IL-12p70. allows for the generation of fully-mature DC1s in serum-free AIM-V medium. The invention discloses systems that use the foregoing products and methods to facilitate the clinical application of DC1-based vaccines and the identification of novel factors involved in the induction of Th1 and CTL responses by DC1.
Owner:KALINSKI PAWEL

Neural processor

Disclosed is a digital neural processor comprising at least one neural processing element. The neural processing elements including at least one simulated dendrite and a simulated axon. Each of the simulated dendrites may include: a dendrite input capable of receiving at least one dendrite input signal and a dendrite signal propagation function capable of calculating a dendrite output signal in discrete time steps from each dendrite input signal. The signal propagation function may further include a delay parameter; a duration parameter; and an amplitude parameter. The simulated axon includes an axon input capable of receiving dendrite output signals, an axon function, capable of calculating an axon output signal from dendrite output signal(s) and an axon output capable of outputting the axon output signal.
Owner:GEORGE MASON INTPROP INC

Electrolytic solution for integrated circuit copper wire laying electrodeposition

The invention provides an electrolyte used in integrated circuit copper cabling electrodeposition, which comprises the following components and contents: 50-200g / liter of copper sulphate, 50-220g / liter of sulphuric acid, 10-150 milligram / liter of chloridion, 5-200 milligram / liter of inhibitor, 5-50 milligram / liter of accelerator, 0.5-20 milligram / liter of leveling agent and the rest of deionized water. As the electrolyte contains the chloridion, inhibitor and accelerator, the surface appearance is improved after electrodeposition and the roughness concentration is reduced. And the leveling agent can increase the adsorption of the accelerator on the surface of electrodes in the deposition process, and then increases the surface improvement effect of the accelerator; the surface roughness of the clad layer is further reduced; the orientation of the clad layer obtained by deposition Cu (111) is dominant; after deposition, the surface dendrite growth mode disappears; and the surface has no hole defects.
Owner:TSINGHUA UNIV

Secondary battery with autolytic dendrites

A battery (100) comprises a cell having a cathode compartment (120) that includes an element that is oxidized during charging of the battery (100), wherein the oxidized element forms a salt with an acid and thereby increases the H+ concentration in the cathode compartment (120) sufficient to promote an H+ flux into the anode compartment (110) across the separator (130), wherein the H+ flux across the separator (130) is sufficient to disintegrate a zinc dendrite proximal to the separator (130).
Owner:PLURION LTD

Method of manufacturing nickel zinc batteries

Methods of manufacturing a rechargeable power cell are described. Methods include providing a slurry or paste of negative electrode materials having low toxicity and including dispersants to prevent the agglomeration of particles that may adversely affect the performance of power cells. The methods utilize semi-permeable sheets to separate the electrodes and minimize formation of dendrites; and further provide electrode specific electrolyte to achieve efficient electrochemistry and to further discourage dendritic growth in the cell. The negative electrode materials may be comprised of zinc and zinc compounds. Zinc and zinc compounds are notably less toxic than the cadmium used in NiCad batteries. The described methods may utilize some production techniques employed in existing NiCad production lines. Thus, the methods described will find particular use in an already well-defined and mature manufacturing base.
Owner:ZINCFIVE POWER INC

Negative electrode mixture or gel electrolyte, and battery using said negative electrode mixture or said gel electrolyte

InactiveUS20140205909A1Improves cycle characteristic and rate characteristic and coulombic efficiency of batteryImprove securityFuel and primary cellsAlkaline accumulatorsCross-linkShape change
The purpose of the present invention is to provide a zinc negative electrode mixture for forming negative electrodes of safe and economic batteries exhibiting excellent battery performance; and a gel electrolyte or a negative electrode mixture which can be suitably used for forming a storage battery exhibiting excellent battery performance such as a high cycle characteristic, rate characteristic, and coulombic efficiency while suppressing change in form, such as shape change and dendrite, and passivation of the electrode active material. Another purpose of the present invention is to provide a battery including the zinc negative electrode mixture or the gel electrolyte. (1) The zinc negative electrode mixture contains a zinc-containing compound and a conductive auxiliary agent. The zinc-containing compound and / or the conductive auxiliary agent contain(s) particles having an average particle size of 1000 μm or smaller and / or particles having an aspect ratio (vertical / lateral) of 1.1 or higher. (2) The gel electrolyte intended to be used in batteries has a cross-linked structure formed by a multivalent ion and / or an inorganic compound. (3) The negative electrode mixture intended to be used in batteries contains a negative electrode active material and a polymer.
Owner:NIPPON SHOKUBAI CO LTD

Multilayer material based on active lithium, method of preparation and applications in electrochemical generators

A method for preparing a multilayer material based on active lithium, by depositing a film of active lithium on a protective layer at a sufficient speed so that substantially no oxidation of the lithium occurs, and / or during a sufficient time for the adhesion of the lithium to develop after contact with the protective layer. The multilayer material, when incorporated in an electrochemical battery as an anode, has excellent impedance stability and no formation of dendrites during the cycling. Batteries where the anode is the multilayer material are particularly efficient in terms of their coulomb efficiency.
Owner:HYDRO QUEBEC CORP

Mature dendritic cell compositions and methods for culturing same

This invention provides methods to prepare and use immunostimulatory cells for enhancing an immune response. The invention provides a method for preparing mature dendritic cells (DCs), comprising the sequential steps of: (a) signaling isolated immature dendritic cells (iDCs) with a first signal comprising an interferon gamma receptor (IFN-γR) agonist and / or a tumor necrosis factor alpha receptor (TNF-αR) agonist to produce signaled dendritic cells; and (b) signaling said signaled dendritic cells with a second transient signal comprising an effective amount of a CD40 agonist to produce CCR7+ mature dendritic cells. Also provided by this invention are enriched populations of dendritic cells prepared by the methods of the invention. Such dendritic cells have enhanced immunostimulatory properties and increased IL-12 secretion and / or decreased IL-10 secretion. CD40 signaling can be initiated by one or more of polypeptide translated from an exogenous polynucleotide encoding CD40L (e.g., mRNA or DNA), an agonistic antibody to CD40 receptor or by CD40 ligand polypeptide. The enriched populations can be further modified by the administration of an immunogen to the DC. The DC will take up and process the immunogen on its cell surface.
Owner:COIMMUNE INC +1

Dendritic cell nodes

The present invention features dendritic cell nodes that can be used to vaccinate subjects against pathogens and to modulate a subject's immune system to treat or prevent various diseases and conditions.
Owner:WHITEHEAD INST FOR BIOMEDICAL RES +3

High purity electrolytic copper and its production method

A method of producing high purity electrolytic copper through halide-bath electrowinning is provided. The method includes the steps of: growing copper in dendritic form to be deposited on a cathode; and recovering growth ends of 3.0 mm or shorter from the dendrites.
Owner:MITSUI MINING & SMELTING CO LTD

Method of manufacturing nickel zinc batteries

Methods of manufacturing a rechargeable power cell are described. Methods include providing a slurry, paste, or dry mixture of negative electrode materials having low toxicity and including dispersants to prevent the agglomeration of particles that may adversely affect the performance of power cells. The methods utilize semi-permeable sheets to separate the electrodes and minimize formation of dendrites; and further provide electrode specific electrolyte to achieve efficient electrochemistry and to further discourage dendritic growth in the cell. The negative electrode materials may be comprised of zinc and zinc compounds. Zinc and zinc compounds are notably less toxic than the cadmium used in nickel cadmium batteries. The described methods may utilize some production techniques employed in existing NiCad production lines. Thus, the methods described will find particular use in an already well-defined and mature manufacturing base.
Owner:POWERGENIX SYST

Polyimide-based lithium metal battery

The present invention relates to Lithium Metal batteries. In particular, it is related to lithium metal batteries containing a polyimide-based electrolyte. The present invention concerns a new concept of polyimide-based electrolytic component having an electrolyte consisting of at least one solvent and at least one alkali metal salt, with specific amounts of solvents, to optimize the properties of conductivity of the polyimide-based electrolyte and the mechanical properties of the polyimide-based electrolyte separator towards metallic lithium anode to prevent dendrites growths.
Owner:BRIGHTVOLT INC

Metal-organic frame material based composite battery diaphragm and preparation method and application thereof

The invention discloses a metal-organic frame material based composite battery diaphragm and a preparation method and application thereof. The preparation method comprises the following steps: (1), synthesizing a metal-organic frame material precursor; (2), compounding the metal-organic frame material precursor and a two-dimensional material or a polymer material to obtain the metal-organic framematerial based composite battery diaphragm. The diaphragm is high in porosity and large in specific surface area, the electrolyte wettability of the diaphragm can be improved, and the ion transport number of the diaphragm is greatly increased; the diaphragm has the advantage of an adjustable pore size, and through a suitable pore size, shuttling of electrolyte ions can be effectively controlled, occurrence of adverse side reactions can be inhibited, the battery capacity can be increased and the cycle life can be prolonged; through a uniform pore structure, the passing ions can be uniformly dispersed on the surface of an electrode, so that growth of dendrites are fundamentally inhibited, the cycle life of a battery is effectively prolonged, and the safety performance of the battery is improved; the metal-organic frame material based composite battery diaphragm has good flexibility and mechanical properties and can be applied to assembly of a practical soft pack battery.
Owner:NANJING UNIV

Electrolyte composition for nickel-zinc batteries

Electrodes and electrolytes for nickel-zinc secondary battery cells possess compositions that limit dendrite formation and other forms of material redistribution in the zinc electrode. In addition, the electrolytes may possess one or more of the following characteristics: good performance at low temperatures, long cycle life, low impedance and suitability for high rate applications.
Owner:ZINCFIVE POWER INC

Delivery of as-oligonucleotide microspheres to induce dendritic cell tolerance for the treatment of autoimmune type 1 diabetes

AS-oligonucleotides are delivered in microsphere form in order to induce dendritic cell tolerance, particularly in the non-obese-diabetic (NOD) mouse model. The microspheres incorporate antisense (AS) oligonucleotides. A process includes using an antisense approach to prevent an autoimmune diabetes condition in NOD mice in vivo and in situ. The oligonucleotides are targeted to bind to primary transcripts CD40, CD80, CD86 and their combinations.
Owner:BAXTER INT INC +2

Production method of boron nitride coated diaphragm of lithium-sulfur battery

The invention relates to a production method of a boron nitride coated diaphragm of a lithium-sulfur battery. The diaphragm is produced from a commercial polypropylene diaphragm, two sides of the diaphragm are uniformly covered with hexagonal boron nitride, and the characteristics of hexagonal boron nitride 'white graphite' are used, so lithium ions are allowed to pass, shuttle of polysulfide anions is obstructed, a reaction of a lithium negative electrode with the polysulfide anions is inhibited, formation of lithium dendrites, lithium sulfide precipitate and fixed lithium is prevented, the capacity, the coulombic efficiency and the cycle stability of the lithium-sulfur battery are improved, the growth of the negative electrode metal dendrite in the cycle process is effectively inhibited, and the safety of the battery is improved. The method has the advantages of simple process route and clear purpose, and the produced diaphragm has multiple functions, and can greatly overcome disadvantages of present technologies.
Owner:NORTHWESTERN POLYTECHNICAL UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Eureka Blog
Learn More
PatSnap group products