Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2934results about "Primary cells" patented technology

Composite solid electrolyte for protection of active metal anodes

ActiveUS20070172739A1Eliminate through-porosityHigh metal ion conductivityCell electrodesPrimary cellsPorosityTectorial membrane
A composite solid electrolyte include a monolithic solid electrolyte base component that is a continuous matrix of an inorganic active metal ion conductor and a filler component used to eliminate through porosity in the solid electrolyte. In this way a solid electrolyte produced by any process that yields residual through porosity can be modified by the incorporation of a filler to form a substantially impervious composite solid electrolyte and eliminate through porosity in the base component. Methods of making the composites is also disclosed. The composites are generally useful in electrochemical cell structures such as battery cells and in particular protected active metal anodes, particularly lithium anodes, that are protected with a protective membrane architecture incorporating the composite solid electrolyte. The protective architecture prevents the active metal of the anode from deleterious reaction with the environment on the other (cathode) side of the architecture, which may include aqueous, air and organic liquid electrolytes and / or electrochemically active materials.
Owner:POLYPLUS BATTERY CO INC

Nanostructured Materials for Battery Applications

The present invention relates to nanostructured materials (including nanowires) for use in batteries. Exemplary materials include carbon-comprising, Si-based nanostructures, nanostructured materials disposed on carbon-based substrates, and nanostructures comprising nanoscale scaffolds. The present invention also provides methods of preparing battery electrodes, and batteries, using the nanostructured materials.
Owner:ONED MATERIAL INC

Electrode Including Nanostructures for Rechargeable Cells

A lithium ion battery electrode includes silicon nanowires used for insertion of lithium ions and including a conductivity enhancement, the nanowires growth-rooted to the conductive substrate.
Owner:AMPRIUS INC

Method for production of stacked battery

A method for production of a stacked battery having a plurality of positive electrode current collection tabs and a plurality of negative electrode current collection tabs drawn out from a stacked member formed by laying positive electrodes and negative electrodes alternately one on the other with separators interposed between them and bonded respectively to a positive lead terminal and a negative lead terminal comprises a step of determining in advance a simultaneously bondable number, or the number of positive electrode current collection tabs and the number of negative electrode current collection tabs that can be laid one on the other and collectively bonded, and bonding conditions for bonding them and a step of forming groups of current collection tabs, each group being formed by laying a number of current collection tabs not exceeding the simultaneously bondable number one on the other, displacing the bonding positions of the groups of positive electrode current collection tabs or those of negative electrode current collection tabs relative to each other in the direction of drawing out the positive electrode current collection tabs or the negative electrode current collection tabs, whichever appropriate, or in a direction perpendicular to the direction on the surface of the positive lead terminal or the negative lead terminal, whichever appropriate, and collectively bonding the positive electrode current collection tabs or the negative electrode current collection tabs of each group under the bonding conditions.
Owner:ENVISION AESC ENERGY DEVICES LTD

Battery pack with integral cooling and bussing devices

ActiveUS20080090137A1High energy density characteristicImproving packaging characteristicFinal product manufacturePrimary cellsMobile vehicleEngineering
A battery module of the present invention is adaptable to be utilized in various configurations including and not limited to an overlapping battery cell packaging configuration and a vertical stack battery cell packaging configuration used in an automotive vehicle. The battery module has a plurality of battery heatsink assemblies with the cells disposed therebetween. A plurality of rods extend through the each heatsink assemblies to secure the heatsink assemblies and the cell with one another to form the battery module.
Owner:ENERDEL

Nanocomposite of graphene and metal oxide materials

Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge / discharge rate greater than about 10C.
Owner:THE TRUSTEES FOR PRINCETON UNIV +1

Carbon-coated silicon particle power as the anode material for lithium batteries and the method of making the same

A process for the production of coated silicon / carbon particles comprising: providing a carbon residue forming material; providing silicon particles; coating said silicon particles with said carbon residue forming material to form coated silicon particles; providing particles of a carbonaceous material; coating said particles of carbonaceous material with said carbon residue forming material to form coated carbonaceous particles; embedding said coated silicon particles onto said coated carbonaceous particles to form silicon / carbon composite particles; coating said silicon / carbon composite particles with said carbon residue forming material to form coated silicon / carbon composite particles; and stabilizing the coated composite particles by subjecting said coated composite particles to an oxidation reaction. The coated composite particles will have a substantially smooth coating. The particles may be coated with multiple layers of carbon residue forming material /
Owner:PYROTECK INC

Lithium metal dispersion in electrodes

Electrodes, such as anodes and cathodes, can include a host material that is prelithiated or undergoes lithiation upon electrolyte introduction into a battery. Lithiation of the host material can occur by the agitation of lithium metal and a host material, the agitation of a lithium metal powder and a host material at a temperature greater than room temperature, the application of pressure to a lithium metal and host material mixture, contact of the host material with molten lithium metal, the lamination of lithium foil or lithium mesh onto an electrode containing the host material, or by lamination of lithium metal or mesh onto an electrode at elevated temperatures.
Owner:AEA TECH BATTERY SYST +1

Electrode structure for lithium secondary battery and secondary battery having such electrode structure

In an electrode structure for a lithium secondary battery including: a main active material layer formed from a metal powder selected from silicon, tin and an alloy thereof that can store and discharge and capable of lithium by electrochemical reaction, and a binder of an organic polymer; and a current collector, wherein the main active material layer is formed at least by a powder of a support material for supporting the electron conduction of the main active material layer in addition to the metal powder and the powder of the support material are particles having a spherical, pseudo-spherical or pillar shape with an average particle size of 0.3 to 1.35 times the thickness of the main active material layer. The support material is one or more materials selected from a group consisting of graphite, oxides of transition metals and metals that do not electrochemically form alloy with lithium. Organic polymer compounded with a conductive polymer is used for the binder. There are provided an electrode structure for a lithium secondary battery having a high capacity and a long lifetime, and a lithium secondary battery using the electrode structure and having a high capacity, a high energy density and a long lifetime.
Owner:CANON KK

Lithium alloy/sulfur batteries

Electrochemical cells including anode compositions that may enhance charge-discharge cycling efficiency and uniformity are presented. In some embodiments, alloys are incorporated into one or more components of an electrochemical cell, which may enhance the performance of the cell. For example, an alloy may be incorporated into an electroactive component of the cell (e.g., electrodes) and may advantageously increase the efficiency of cell performance. Some electrochemical cells (e.g., rechargeable batteries) may undergo a charge / discharge cycle involving deposition of metal (e.g., lithium metal) on the surface of the anode upon charging and reaction of the metal on the anode surface, wherein the metal diffuses from the anode surface, upon discharging. In some cases, the efficiency and uniformity of such processes may affect cell performance. The use of materials such as alloys in an electroactive component of the cell have been found to increase the efficiency of such processes and to increase the cycling lifetime of the cell. For example, the use of alloys may reduce the formation of dendrites on the anode surface and / or limit surface development.
Owner:SION POWER CORP

Electrical-energy-storage unit (EESU) utilizing ceramic and integrated-circuit technologies for replacement of electrochemical batteries

An electrical-energy-storage unit (EESU) has as a basis material a high-permittivity composition-modified barium titanate ceramic powder. This powder is double coated with the first coating being aluminum oxide and the second coating calcium magnesium aluminosilicate glass. The components of the EESU are manufactured with the use of classical ceramic fabrication techniques which include screen printing alternating multilayers of nickel electrodes and high-permittivitiy composition-modified barium titanate powder, sintering to a closed-pore porous body, followed by hot-isostatic pressing to a void-free body. The components are configured into a multilayer array with the use of a solder-bump technique as the enabling technology so as to provide a parallel configuration of components that has the capability to store electrical energy in the range of 52 kW·h. The total weight of an EESU with this range of electrical energy storage is about 336 pounds.
Owner:EESTOR

Method for preparing electrode material for lithium battery

A method for preparing an electrode material for a lithium battery, characterized in that a noncrystalline silicon thin film that serves as an active material is deposited on a substrate.
Owner:SANYO ELECTRIC CO LTD

Power system for high temperature applications with rechargeable energy storage

A power system adapted for supplying power in a high temperature environment is disclosed. The power system includes a rechargeable energy storage that is operable in a temperature range of between about seventy degrees Celsius and about two hundred and fifty degrees Celsius coupled to a circuit for at least one of supplying power from the energy storage and charging the energy storage; wherein the energy storage is configured to store between about one one hundredth (0.01) of a joule and about one hundred megajoules of energy, and to provide peak power of between about one one hundredth (0.01) of a watt and about one hundred megawatts, for at least two charge-discharge cycles. Methods of use and fabrication are provided. Embodiments of additional features of the power supply are included.
Owner:FASTCAP SYST

Multi-port reconfigurable battery

A multi-port reconfigurable battery has at least one bank of statically joined series connected battery cells, each including a positive and negative pole connected through switches to respective output connections on at least one port. Processor controlled switches reconfigure the cells to provide power for electrical loads on one or more ports and simultaneously provide charging on one or more other ports. An alternative configuration divides groups of series connected cells into separate battery banks that permit other configurations. Ports are configurable to share one electrically common connection with other ports providing a simplified configuration (multi-tap reconfigurable battery). Applications include selectable motor speed control and battery regeneration schemes matched to motor output, and single or multiphase AC power output at selectable frequencies for use as an Uninterruptible Power Supply. The battery is also described as a power source for a forced-air induction system (e.g. electric supercharger) for a combustion engine.
Owner:SOLSONA ENTERPRISE LLC

Organic/inorganic composite microporous membrane and electrochemical device prepared thereby

Disclosed is an organic / inorganic composite porous separator comprising: (a) a polyolefin-based separator substrate; and (b) an active layer formed by coating at least one region selected from the group consisting of a surface of the substrate and a part of pores present in the substrate with a mixture of inorganic particles and a binder polymer, wherein the inorganic particles in the active layer are interconnected among themselves and are fixed by the binder polymer, and interstitial volumes among the inorganic particles form a pore structure. A method for manufacturing the same separator and an electrochemical device including the same separator are also disclosed. An electrochemical device comprising the organic / inorganic composite porous separator shows improved thermal and electrochemical safety and quality, simultaneously.
Owner:TORAY BATTERY SEPARATOR FILM +1

Cathode for lithium battery

The present invention relates to cathodes used in electrochemical cells. A force, or forces, applied to portions of an electrochemical cell as described in this application can reduce irregularity or roughening of an electrode surface of the cell, improving performance. The cathodes described herein may possess enhanced properties that render them particularly suitable for use in electrochemical cells designed to be charged and / or discharged while a force is applied. In some embodiments, the cathode retains sufficient porosity to charge and discharge effectively when a force is applied to the cell. Cathodes described herein may also comprise relatively high electrolyte-accessible conductive material (e.g., carbon) areas. The cathode may comprise a relatively low ratio of the amount of binder and / or mass of electrolyte to cathode active material (e.g., sulfur) ratio in some instances. In some embodiments, electrochemical cells comprising the cathodes described herein may achieve relatively high specific capacities and / or relatively high discharge current densities. In addition, the cathode described herein may exhibit relatively high cathode active material (e.g., sulfur) utilization during charge and discharge. In still further cases, the electrical conductivity between conductive material in the cathode (e.g., carbon) may be enhanced during the application of the force.
Owner:SION POWER CORP

Crosslinked polymer electrolyte membranes for heat and moisture exchange devices

A unitary humidity exchange cell (HUX) is dislosed that includes at least one composite membrane, disposed between at least one first chamber for flow of the first fluid therethrough and at least one second chamber for flow of the second fluid therethrough. The composite membrane include an at least partially sulfonated humidity-conducting polymer comprising residues derived from at least one arylvinyl monomer; and a reinforcing substrate bonded thereto. The product finds utility in a variety of physical and chemical processes and products whereby moisture or other highly polar liquid or gas transfer, exchange removal or delivery is important. A notable application is the Membrane Energy Recovery Ventilator (MERV) in which both heat, ions and moisture is transferred between two air streams, one intake and one exhaust, from an air-conditioned building.
Owner:TANGREDI PATRICIA

Coated electrode particles for composite electrodes and electrochemical cells

Electrodes for use in electrochemical devices are disclosed. More particularly coated electrode particles for use in solid electrochemical cells and materials and systems for improving electronic conductivity and repulsive force characteristics of an electrode network are disclosed. An article containing a plurality of distinct first particles that form an electrode network in which the distinct first particles are coated with a system of electrically conductive material is also disclosed. In some embodiments, the coating layer also includes a low refractive index material. In some embodiments, the coating layer of the electroactive material includes a plurality of second particles.
Owner:A123 SYSTEMS LLC

Photovoltaic fibers

Photovoltaic materials and methods of photovoltaic cell fabrication provide a photovoltaic cell in the form of a fiber. These fibers may be formed into a flexible fabric or textile.
Owner:MERCK PATENT GMBH

Photovoltaic module with edge access to pv strings, interconnection method, apparatus, and system

InactiveUS20100275976A1Optimal and less-costly fabricationSimplifying and increasing production capacityPhotovoltaic supportsPV power plantsElectrical conductorEngineering
A photovoltaic module apparatus includes PV cells arranged in a planar array, the PV cells being electrically connected in at least one string having positive and negative terminals. Positive and negative conductors are connected to the positive and negative terminals respectively and front and back encapsulating sheets are disposed on the front and back sides of the array to form a sub-laminate. Each of the positive and negative conductors has a respective portion extending from the positive and negative terminals, between the front and back encapsulating sheets. Front and back protectors are disposed on the front and back encapsulating sheets to form a laminate. First and second terminating portions of the positive and negative conductors extend outwardly from the outer perimeter edge of the laminate. A frame including a frame member having a holder may be provided about at least one portion of the outer perimeter edge of the laminate.
Owner:DAY4 ENERGY

Reactive deposition for electrochemical cell production

Light reactive deposition can be adapted effectively for the deposition of one or more electrochemical cell components. In particular, electrodes, electrolytes, electrical interconnects can be deposited form a reactive flow. In some embodiments, the reactive flow comprises a reactant stream that intersects a light beam to drive a reaction within a light reactive zone to produce product that is deposited on a substrate. The approach is extremely versatile for the production of a range of compositions that are useful in electrochemical cells and fuel cell, in particular. The properties of the materials, including the density and porosity can be adjusted based on the deposition properties and any subsequent processing including, for example, heat treatments.
Owner:NANOGRAM

Hybrid electric vehicle

A highly energy efficient automobile that provides payload, safety and performance capacities similar to a comparable vehicle of a given vehicle class. The current invention is ideal for short to medium range urban and suburban driving. The current invention incorporates components in a unique and novel way, in which these components combine to form a system that produces an automobile that reduces overall air pollution while encouraging the commercialization of alternative energy sources. The current invention features an lightweight, low rolling resistance, digitally controlled and direct-drive electric propulsion system. A lightweight spaceframe with a suspension system provides a structure for mounting a low-aerodynamic-drag body system and other components. An intelligent power and thermal management system coupled with a removable auxiliary power module supplies the electrical energy required. While the preferred embodiment is substantially a passenger vehicle, the current invention may be scaled to other land vehicles.
Owner:INT HUMANITIES CENT

Polymer electrolyte, intercalation compounds and electrodes for batteries

Solid battery components are provided. A block copolymeric electrolyte is non-crosslinked and non-glassy through the entire range of typical battery service temperatures, that is, through the entire range of at least from about 0° C. to about 70° C. The chains of which the copolymer is made each include at least one ionically-conductive block and at least one second block immiscible with the ionically-conductive block. The chains form an amorphous association and are arranged in an ordered nanostructure including a continuous matrix of amorphous ionically-conductive domains and amorphous second domains that are immiscible with the ionically-conductive domains. A compound is provided that has a formula of LixMyNzO2. M and N are each metal atoms or a main group elements, and x, y and z are each numbers from about 0 to about 1. y and z are chosen such that a formal charge on the MyNz portion of the compound is (4-x). In certain embodiments, these compounds are used in the cathodes of rechargeable batteries. The present invention also includes methods of predicting the potential utility of metal dichalgogenide compounds for use in lithium intercalation compounds. It also provides methods for processing lithium intercalation oxides with the structure and compositional homogeneity necessary to realize the increased formation energies of said compounds. An article is made of a dimensionally-stable, interpenetrating microstructure of a first phase including a first component and a second phase, immiscible with the first phase, including a second component. The first and second phases define interphase boundaries between them, and at least one particle is positioned between a first phase and a second phase at an interphase boundary. When the first and second phases are electronically-conductive and ionically-conductive polymers, respectively, and the particles are ion host particles, the arrangement is an electrode of a battery.
Owner:MASSACHUSETTS INST OF TECH

Flexible battery and method for producing the same

Disclosed is a flexible battery including a sheet-like electrode group, an electrolyte, and a housing with flexibility enclosing the electrode group and electrolyte. The housing includes a film material folded into two in which the electrode group is inserted. The film material has two facing portions respectively facing two principal surfaces of the electrode group, a fold line which is between the two facing portions and along which the film material is folded, and two bonding margins respectively set around the two facing portions. The two bonding margins are bonded to each other into a bonded portion. At least the two facing portions of the film material are formed in a corrugated shape having a plurality of ridge and valley lines arranged in parallel to each other. The ridge lines in one of the two facing portions are overlapped with the valley lines in the other. The fold line is parallel to the ridge and valley lines.
Owner:PANASONIC CORP

Solid ion conductor which has a garnet-like crystal structure and has the stoichiometric composition L7+XAXG3-XZr2O12

The invention is directed to a solid ion conductor which has a garnet-like crystal structure and has the stoichiometric composition L7+xAxG3−xZr2O12, whereinL is in each case independently a monovalent cation,A is in each case independently a divalent cation,G is in each case independently a trivalent cation,0≦x≦3 andO can be partly or completely replaced by divalent or trivalent anion.
Owner:BASF AG

Offset interconnect for a solid oxide fuel cell and method of making same

An interconnect for a solid oxide fuel cell includes a non-ionically and non-electrically conductive ceramic gas separator plate comprising at least two ceramic layers, a plurality of first vias extending through the first separator plate ceramic layer but not through the second separator plate ceramic layer and a plurality of second vias extending through the second separator plate ceramic layer but not through the first separator plate ceramic layer. The second vias are offset from the first vias. The interconnect also includes a plurality of electrically conductive first fillers located in the plurality of first vias and a plurality of electrically conductive second fillers located in the plurality of second vias. Each of the plurality of first fillers is electrically connected to at least one second filler.
Owner:BLOOM ENERGY CORP

Nano-lithium-ion batteries and methos for manufacturing nano-lithium-ion batteries

The disclosure describes nano-lithium-ion batteries having a cathode, an anode including lithium titanium oxide nanoparticles, a separator including silicon dioxide nanoparticles and an electrolyte. In a preferred embodiment, the cathode is composed of 70-95 wt % lithium cobalt oxide, 1-6 wt % of a conductive carbon, and a synthetic resin including at least one thermoplastic; the anode is composed of 75-90 wt % lithium titanium oxide nanoparticles, 1-5 wt % of a conductive carbon, and a synthetic resin including at least one thermoplastic; and the separator is composed of silicon dioxide nanoparticles and a synthetic resin comprising at least one thermoplastic. The disclosure also describes methods of manufacturing the nano-lithium-ion batteries.
Owner:FU ZHIGUO +2
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Eureka Blog
Learn More
PatSnap group products