Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

185results about How to "Small crystal size" patented technology

Metal matrix composite material

According to the present invention there is provided a metal matrix composite material and a method for the manufacture thereof, the material comprising an aluminium-based alloy matrix, the matrix comprising a microstructure composed of at least a first aluminium alloy phase and having a second phase of nanostructured quasicrystalline particles embedded therein and further including in said matrix fibrils of at least one other dissimilar material.
Owner:SMITH GEORGE DAVID WILLIAM +3

Liquid crystal display device

It is desirable to reduce an overall size of a small liquid crystal display device, while keeping a screen size to a certain value. Thus, there is provided a liquid crystal display device including a liquid crystal display panel on a mold, and a backlight placed in the mold. The backlight includes a light guide panel, an LED provided on a side surface of the liquid guide panel, and other components. A main flexible wiring substrate is attached to the liquid crystal display panel, and extends to a back surface of the mold. The LED is mounted on an LED flexible wiring substrate. An electronic component mounted on the main flexible wiring substrate is placed on the back side of the mold. Then, an insulating sheet is provided between the electronic component and the LED to prevent short circuit between them, instead of using a partition wall for electrical insulation.
Owner:PANASONIC LIQUID CRYSTAL DISPLAY CO LTD +1

Polypropylene monofilament fibers exhibiting low-shrink, high tenacity, and extremely high modulus levels

Unique thermoplastic monofilament fibers and yarns that exhibit heretofore unattained physical properties are provided. Such fibers are basically manufactured through the extrusion of thermoplastic resins that include a certain class of nucleating agent therein, and are able to be drawn at high ratios with such nucleating agents present, that the tenacity and modulus strength are much higher than any other previously produced thermoplastic fibers, particularly those that also simultaneously exhibit extremely low shrinkage rates. Thus, such fibers require the presence of certain compounds that quickly and effectively provide rigidity to the target thermoplastic (for example, polypropylene), particularly after heat-setting. Generally, these compounds include any structure that nucleates polymer crystals within the target thermoplastic after exposure to sufficient heat to melt the initial pelletized polymer and allowing such an oriented polymer to cool. The compounds must nucleate polymer crystals at a higher temperature than the target thermoplastic without the nucleating agent during cooling. In such a manner, the "rigidifying" nucleator compounds provide nucleation sites for thermoplastic crystal growth. The preferred "rigidifying" compounds include dibenzylidene sorbitol based compounds, as well as less preferred compounds, such as [2.2.1]heptane-bicyclodicarboxylic acid, otherwise known as HPN-68, sodium benzoate, certain sodium and lithium phosphate salts [such as sodium 2,2'-methylene-bis-(4,6-di-tert-butylphenyl)phosphate, otherwise known as NA-11]. Specific methods of manufacture of such inventive thermoplastic fibers, as well as fabric articles made therefrom, are also encompassed within this invention.
Owner:ROYER JOSEPH R +2
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products