Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1071 results about "Shaft furnace" patented technology

Method for manufacturing heat-resistant aluminum alloy wire for power cable

The invention discloses a method for manufacturing a heat-resistant aluminum alloy wire for a power cable, and belongs to the technical field of design and manufacture of power transmission lines. The aluminum alloy wire uses magnesium, copper, iron, silicon, boron, cerium-rich rare earth, zirconium, yttrium, cobalt and the like as alloying elements. The manufacturing process for the aluminum alloy wire comprises the following steps: adding the alloying elements into fused aluminum of a shaft furnace, casting the mixture after smelting into a cast strip and thermally rolling the cast strip, then performing cold-drawing processing, annealing in the cold-drawing process, adopting recrystallization and thermal treatment before final cold-drawing, and later performing trace cold-drawing processing. The aluminum alloy wire not only has good bending resistant performance and forming performance, but also has high conductivity and good heat resistance (comprising high-temperature creep resistance), and can ensure the stability of electrical connection under both normal temperature and high temperature.
Owner:ZHENGZHOU CABLE +1

Method and device for producing direct reduced iron by using gas-based reduction shaft furnace

The invention discloses a method and device for producing direct reduced iron by using a gas-based reduction shaft furnace. Coal reducing gas and coke oven gas are mixed and supplied to a shaft furnace so as to produce direct reduced iron. The method comprises the following steps: separating the coke oven gas into hydrogen gas and linde gas, mixing the hydrogen gas with the coal reducing gas and using as reducing gas to reduce iron ores, and using the linde gas as cooling gas to cool direct reduced iron. The device for realizing the method comprises a shaft furnace, a coke oven gas source, a coal gasification device, a coke oven gas hydrogen-extracting device and a gas heating device. In the invention, coal gasification devices of different sizes can be flexibly used with a coke oven gas supply device, thereby reducing the size of the coal gasification device and effectively using the coke oven gas. Meanwhile, the invention cancels the minor cycle of a cooling section of a common shaft furnace, saves the equipment and investment, and brings the heat of direct reduced iron to a reducing section, thereby saving the heating load of the system reducing gas.
Owner:CISDI SHANGHAI ENG CO LTD +1

Coal reducing gas direct reduction metallurgical process in gas-based shaft kiln and system

The invention discloses a coal-derived reducing gas base shaft furnace direct reduction metallurgical method and a system thereof. Reducing gases with CO and H2 serving as the main components are prepared from coal through a coal-derived reducing gas system, and are treated by the reducing reaction with iron ore through a direct reduction metallurgical system. The reducing gases are mainly used as the reducing agents of the reducing flow, the cooling agents of the cooling flow and the fuel of the direct reducing metallurgical system. The reducing flow is composed of a reducing shaft furnace, a furnace top gas heat exchanger, a furnace top gas shock chilling / scrubbing system, a process gas recycle compressor, a compressor secondary cooler, a CO2 absorber, a process gas humidifier, a process gas heater, etc. The conical part of the lower part of the shaft furnace is the cooling zone of the shaft furnace direct reduction metallurgical furnace. The cooling gases are sprayed in from the conical region of the lower part of the shaft furnace direct reduction metallurgical furnace, and flow upwards across the metallurgical furnace. The hot cooling gases flow away the cooling region and then are cooled, compressed and recycled. The system is simple in structure and low in process cost.
Owner:JIANGSU PROVINCE METALLURGICAL DESIGN INST

Method and system for pulverized coal gasification for gas generation and direct reduction metallurgy of gas-based shaft furnace

The invention provides a method for pulverized coal gasification for gas generation and direct reduction metallurgy of a gas-based shaft furnace. According to the method, feed coal is ground and then enters a gasification furnace in a form of pulverized coal; the pulverized coal reacts with a gasification agent oxygen and water vapor to generate crude gas rich in CO and H2; the high-temperature raw gas generated by the gasification furnace is subjected to cooling and wet cleaning for dust removal to obtain crude synthesis gas mainly containing CO and H2; the crude synthesis gas is adjusted into a reducing agent for a gas-based shaft furnace through water vapor conversion and purification; and the reducing agent enters the shaft furnace and reacts with lump ores or pellets to generate reducing iron. Through the invention, the coal gasification is combined with a gas-based direct reduction shaft furnace technology, thus the limitation on total natural gas of a gas-based direct reducing method is overcome, and large-scale production is realized; and the method has the advantages of low energy consumption, little pollution and the like.
Owner:JIANGSU PROVINCE METALLURGICAL DESIGN INST

Method for manufacturing moderate intensity aluminium alloy wire with 57% electric conductivity

The invention provides a method for manufacturing a moderate intensity aluminium alloy wire with 57% electric conductivity, and relates to a method for manufacturing a moderate intensity aluminium alloy wire of which the electric conductivity reaches 57% (IACS), which comprises the following steps of: (1) selecting aluminum matrixes and aluminum moderate alloy ingots; (2) carrying out on-the-spot sample analysis and regulation; placing the selected aluminum ingots into a shaft furnace to be melted to obtain an aluminum liquid; and refining with a refining agent; (3) casting and crystallizing: enabling the aluminium alloy liquid in a tilting holding furnace to pass through a trough, and filtering with a ceramic filter plate, and adding a rear earth to ensure the rear earth content to be 0.05-0.15%; continuously casting in an aluminium alloy continuous casting machine to form the aluminium alloy ingots; and rolling the aluminium alloy ingots to obtain moderate intensity aluminium alloy rods by an aluminium alloy continuous mill; (4) solutionizing and quenching: carrying out homogenizing heat treatment on the aluminium alloy rods; and (5) drawing, ageing and twisting: drawing the aluminium alloy rods treated by the former process into the aluminium alloy wires with the required diameter on an aluminium alloy drawing machine, and twisting the aluminium alloy wires by using a frame-type wire twisting machine to manufacture the moderate intensity aluminium alloy wires with 57% electric conductivity in IACS.
Owner:SHANGHAI ZHONGTIAN ALUMINUM WIRE

Technique for producing calcium carbide and cogeneration by two-stage method and device thereof

The invention relates to a technique for producing calcium carbide and cogeneration by a two-stage method and a device thereof. The technique comprises the following steps: after being preheated at a shaft furnace at the upper section, massive carbonous raw material and massive calcic raw material enter an arc furnace at the lower section; while blowing oxygen and coal powder and supplying heat by the electrode in the arc furnace, the raw materials react to produce calcium carbide; and the produced calcium carbide furnace gas is dedusted and combusted by a gas turbine so as to drive the generator to generate power, and sensible heat of exhaust gas is recycled by an exhaust-heat boiler, thereby centrally supplying heat to cities and towns. The invention has the advantages of capability of continuous production, high yield, low investment, low energy consumption, high calcium carbide grade, energy saving, high efficiency and investment saving, and realizes coordinated development of economy, environment and energy sources.
Owner:山西亿众公用事业有限公司

Carbonization process of high-volatilize content coal

The invention relates to a carbonization process of high volatile coal, a direct heating process that heats and distills high volatile coal by using high temperature cycle gas in a shaft furnace as a carrier. Lump coal that moves up and down in the shaft furnace is heated by rising hot gas and the discharged volatiles form char; the char is cooled by cold gas that is introduced by the furnace bottom from the lower part of a furnace and then discharged outside the furnace; the rising gas is introduced outside finally by the furnace top, washed, purified and cooled; one part is taken as a cycle cooling medium, one part is taken as a cycle heat carrier after being per-heated and the rest is taken as a gas external supply and the calorific value is equal to that of a coke oven gas.
Owner:万天骥

Facility for producing reduced iron

In the method of producing reduced iron according to the invention, fine iron oxides and powdery solid reductants are mixed, compacted into sheet-like compacts, and charged onto the hearth of a reduction furnace for reduction while maintaining the temperature inside the furnace at not less than 1100 DEG C. As the sheet-like compacts can be obtained by compacting mixture of raw material by use of rollers or the like, processing time is much shorter than the case of pelletization or agglomeration. A drying step is unnecessary since feeds are placed no the hearth via a feeder chute or the like. The method is carried out with ease by use of the facility according to the invention. High quality hot metal can be produced by charging reduced iron in hot condition obtained by the method described as above into a shaft furnace or a in-bath smelting furnace for melting at high thermal efficiency.
Owner:SUMITOMO METAL IND LTD

Method for comprehensively using vanadium-titanium magnetite by shaft furnace reduction and electric furnace melting

ActiveCN102899435AEffective extraction and utilizationAlleviate the increasingly tense situation of resourcesProcess efficiency improvementShaft furnaceSlagMagnetite
The invention discloses a method for comprehensively using vanadium-titanium magnetite by shaft furnace reduction and electric furnace melting, characterized by: mixing vanadium-titanium magnetite concentrates with a binder to prepare oxidized pellets, reducing in a gas base shaft furnace at 900-1200 DEG C under the pressure of 0.2-0.3Mpa for 4-6 h, wherein the content of the reducing gas that is a mixture of H2 and CO is no less than 90%, and the molar ratio of H2 to CO is 1-3; putting the reduction product into the electric furnace for melting and conducting slag-iron separation to obtain molten iron and slag, wherein the slag contains vanadium-titanium and is used for vanadium extraction and titanium extraction. According to the invention, effectively extraction and utilization of titanium can be realized; there is no need for coke and no coking coal is consumed, thus the increasing insufficiency of coking coal resource is alleviated.
Owner:JIANGSU PROVINCE METALLURGICAL DESIGN INST

Method of manufacturing low carbon sponge iron using microwave vertical furnace

The invention relates to a method to make low carbon sponge iron by microwave shaft furnace. It adopts iron ore powder as raw material, common soft coal dust or anthracite dust as reducer to gain high quality low carbon sponge. It uses the feature that the iron ore powder, carbon powder, and lime powder has selective absorbing to microwave. Under the condition of sealing and high temperature, and under the effect of microwave generator, heater, and adjustor, it would take carbon heat self-reduction by absorbing the heat produced by microwave generator to gain low carbon sponge iron. The method has simple technology, shortens the reduction time period, saves coking coal and coke resource, and reduces environment pollution. The degree of metallization could reach 90-98%, and the carbon content could be lower than 0.5%. It is the ideal method to make low carbon sponge iron.
Owner:TAIYUAN UNIV OF TECH

Device for loading a shaft furnace

A loading device for a shaft furnace comprises a chute supported by a suspension rotor (28) in a fixed housing. The rotor (28) is fitted with a cooling circuit, supplied with liquid coolant via a rotating annular joint (44). The latter comprises a fixed ring (60) and a rotating ring (62), and is fitted in an annular leak collecting tank (46) formed by the suspension rotor (28). Fixed ring (60) is supported by the housing (12). Rotating ring (62) is supported entirely by fixed ring (60) via a bearing (64). Selective coupling means (65, 66) connect the rotating ring (62) to the suspension rotor (28) in such a way as to transmit a rotary moment of rotor (28) to rotating ring (62) selectively, while at the same time preventing other forces from rotor (28) being transmitted to rotating ring (62).
Owner:PAUL WURTH SA

Ore dressing process of oolitic high phosphorus hematite

The ore dressing process of oolitic high phosphorus hematite includes the following steps: roasting crushed oolitic high phosphorus hematite in 80-99 wt% with coal powder as reductant in 1-20 wt% inside a shaft furnace or rotary kiln at 700-1050 deg.c for 0.5-2.5 hr and sealed cooling to room temperature; crushing the roasted hematite, grinding and weak magnetic separation; regulating pH value of the coarse concentrate to 8-12, adding iron ore inhibitor sulfonated starch in 0.5-3.0 kg / ton, activator in 0.2-2.0kg / ton and collecting agent in 0.2-3.0kg / ton and final reverse floatation. The process converts the weak magnetic hematite into strong magnetic mineral, concentrates iron mineral via weak magnetic separation and eliminate P, Si and other impurities in reverse floatation, and can obtain iron concentrate with iron grade higher than 63 %, P content less than 0.15 %, and iron recovering rate over 75 %.
Owner:WUHAN UNIV OF SCI & TECH

Method and facility for producing reduced iron

In the method of producing reduced iron according to the invention, fine iron oxides and powdery solid reductants are mixed, compacted into sheet-like compacts, and charged onto the hearth of a reduction furnace for reduction while maintaining the temperature inside the furnace at not less than 1100° C. As the sheet-like compacts can be obtained by compacting mixture of raw material by use of rollers or the like, processing time is much shorter than the case of pelletization or agglomeration. A drying step is unnecessary since feeds are placed no the hearth via a feeder chute or the like. The method is carried out with ease by use of the facility according to the invention. High quality hot metal can be produced by charging reduced iron in hot condition obtained by the method described as above into a shaft furnace or a in-bath smelting furnace for melting at high thermal efficiency.
Owner:SUMITOMO METAL IND LTD

Method for manufacturing medium-strength aluminum alloy wire with electric conductivity of 59 percent

The invention discloses a method for manufacturing a medium-strength aluminum alloy wire with the electric conductivity of 59 percent (International Annealed Copper Standard, IACS), and relates to a method for manufacturing a medium-strength aluminum alloy wire with high conductivity. The method is characterized by comprising the following steps of: (1) selecting an aluminum matrix and an aluminum intermediate alloy ingot; (2) performing on-the-spot sample analysis and adjustment, namely putting the selected aluminum ingot into a shaft furnace, melting to form molten aluminum, and refining by using a refining agent; (3) casting and crystallizing, namely allowing molten aluminum alloy in a kettle furnace to pass through a runner and filtering by using a ceramic filtering plate, adding rare earth to ensure that the content of the rare earth is 0.05 to 0.15 percent, feeding into an aluminum alloy continuous casting machine, performing continuous casting to form an aluminum alloy cast ingot, and rolling a medium-strength alloy rod by using an aluminum alloy continuous mill; (4) performing solid solution treatment and quenching, namely performing thermal homogenization treatment on the aluminum alloy rod; and (5) drawing, aging and twisting, namely drawing the aluminum alloy rod treated in the previous working procedure into an aluminum alloy wire with the required diameter on an aluminum alloy wire drawing machine, and twisting on a frame type wire twisting machine to obtain the medium-strength aluminum alloy wire with the electric conductivity of 59 percent IACS.
Owner:JIANGSU ZHONGTIAN TECH CO LTD +1

Method for preventing pellets from high temperature reduction bonding in high phosphorus oolitic hematite treatment shaft furnace

ActiveCN103667687ARelieve stickingGood for magnetic separationShaft furnaceDecreased energyShaft furnace
The invention discloses a method for preventing pellets from high temperature reduction bonding in a high phosphorus oolitic hematite treatment shaft furnace, belonging to the technical field of direct-reduction ironmaking. High phosphorus oolitic hematite powder, pulverized coal, a dephosphorization agent and a bonding agent are mixed together according to a proper ratio, the mixture is milled and pressed into balls so as to prepare cold bound pellets, and the bound pellets are dried or maintained and are further conveyed into a direct-reduction shaft furnace; in the direct-reduction shaft furnace, the pellets are subjected to hot coal gas roasting, gas-based prereduction, coal-based direct reduction and cooling process from top to bottom, temperature range of gas-based prereduction and coal-based direct reduction for the bound pellets is 850-1200 DEG C, and standing time in the shaft furnace is 1-5 hours; the reduction gas comprises H2 and CO in a ratio of 1.2-4; the reduced pellets are sealed and cooled, at the outlet of a cooling section, temperature of the bound pellets is controlled to be 100-200 DEG C, and the bound pellets are further smashed, magnetically separated and briquetted, wherein TFe in the obtained iron product is not less than 88%, and phosphorus content is less than 0.3%. The method has the advantages of decreasing energy consumption of reduction process of the shaft furnace.
Owner:韩其平

Method for recovering iron, vanadium and titanium from schreyerite through shaft furnace reduction and electric furnace smelting and separating deep reduction

The invention discloses a method for recovering iron, vanadium and titanium from schreyerite through shaft furnace reduction and electric furnace smelting and separating deep reduction. The method comprises the following steps of: producing a vanadium-titanium oxidized pellet; directly reducing the vanadium-titanium oxidized pellet; smelting and separating a metalized pellet through an electric furnace; extracting vanadium from molten vanadium-containing iron; smelting and separating titanium slag to manufacture titanium dioxide; smelting and separating vanadium slag to manufacture V2O5. According to the method, coal gas, converted coke oven gas or natural gas is used as a reducing agent to reduce original vanadium titanium magnetite, so that the dependency of the traditional blast furnace process to coking coal can be greatly reduced, and diversification of metallurgical energy is realized; by adopting the process, the vanadium titanium magnetite can be smelted completely; mixed smelting of common iron ore and vanadium titanium magnetite is not needed, so that the smelting efficiency is higher; titanium dioxide in the smelted and separated titanium slag produced in smelting accounts for more than 50%, therefore, the slag can be directly used as the raw material for preparing titanium dioxide, and as a result, the recovery rate of vanadium, titanium and iron can be raised; simultaneously, the smelted and separated titanium slag and vanadium slag can be directly utilized, thus the environmental pollution and land resource occupation caused by piling and storing the slag can be avoided.
Owner:TAIHE IRON MINE CHONGQING IRON & STEEL GROUP MINING +1

Iron-containing zinc powder recycling process

The invention discloses a recycling process of iron-containing zinc powder generated in an iron and steel process. The process comprises the following steps: mixing dried iron-containing zinc powder with a binder, and pelletizing by a pelletizer to obtain green balls; feeding the green balls into a shaft furnace and heating to 1100-1300 DEG C; reducing iron in the shaft furnace to sponge iron; converting reduced zinc at high temperature into zinc steam which is discharged out of the shaft furnace with coal gas and enters into a two-stage dedustor; and feeding dedusting mud obtained from the dedustor into a settling pond, and filtering, settling, thickening and drying to obtain zinc powder. The iron-containing zinc powder mainly comprises blast furnace gas ash, gas mud, dedusting ash, converter steelmaking dust and continuous casting steel rolling scrap iron generated in the iron and steel production. By adopting a treatment mode of the shaft furnace, the problem such as large rotary kiln equipment, low utilization ratio of in-kiln volume and high energy consumption is solved. Coal base is directly reduced at a high speed, and meanwhile, zinc in dust is further recovered.
Owner:WISDRI ENG & RES INC LTD

Slag granulating and waste heat recovery device

The invention provides a slag granulating and waste heat recovery device, comprising a slag pot, a slag ladle, a granulating device, a primary cooling fan, a discharge device, a secondary cooling fan, a heat exchange shaft furnace, a cyclone dust collector, a waste heat boiler, a dust collector and a chimney, wherein the slag pot is used for containing slag; a water port is arranged at the lower part of the slag ladle; the granulating device is used for granulating the slag in the slag ladle; the primary cooling fan is used for providing primary cooling air; the discharge device is used for discharging granulated slag; the secondary cooling fan is used for providing secondary cooling air; the heat exchange shaft furnace is used for performing heat exchange between the granulated slag discharged by the discharge device and the secondary cooling air; the cyclone dust collector is used for removing fine particle slag from the primary cooling air and the secondary cooling air; the waste heat boiler is used for generating high-temperature stream; the dust collector is used for collecting dust in the tail gas generated by the waste heat boiler; and the chimney is used for discharging the tail gas after dust collection. By using the slag granulating and waste heat recovery device according to the invention, no new water is consumed in the slag granulating process, the slag waste heatcan be effectively recovered for power generation, and the slag vitreous body after treatment can be used as a construction raw material.
Owner:CENT IRON & STEEL RES INST

Method for manufacturing high-strength aluminium-magnesium-slicon alloy wire

The invention relates to a manufacturing method of Al-Mg-Si alloy line. The technological process is: selecting excellent aluminum ingot and putting the aluminum ingot in a vertical furnace to be melted; adding magnesium, silicon and iron; implementing the alloying treatment on aluminum liquid in a tilting holding furnace; using solid covering flux to cover the surface of the aluminum liquid after the refining through refining agent and standing for more than 30m; using a spectrum analyzer to detect main elements and regulating when the content is deviated; slowly dumping the aluminum solution by the tilting holding furnace; adding 0.03 to 0.5 percent of aluminum boron alloys when the dumped aluminum solution is refined through a chute and a continuous scouring device outside of the furnace; continuously casting with an aluminum alloy caster that is composed of an H-type wheeled crystal wheel into the aluminum alloy ingot; putting the aluminum alloy ingot in a two-roller with three-roller novel combined aluminum alloy continuous mill to mill the ingot into a Al-Mg-S alloy bar. The aluminum alloy bar is arranged at a sliding wire drawing machine to be drawn into aluminum alloy product line with required diameter and be stranded into line. The invention has the advantages of both ensuring the high strength and improving the conductivity simultaneously. The conductivity can reach to 53 percent IACS and the strength reaches to 315MPa.
Owner:SHANGHAI ZHONGTIAN ALUMINUM WIRE

Gas-based shaft furnace direct reduction-electric furnace smelting separation process of vanadium titano-magnetite

The invention discloses a gas-based shaft furnace direct reduction-electric furnace smelting separation process of vanadium titano-magnetite. The process comprises the following steps of: a, forming finished product pellets; b, putting the finished product schreyerite pellets as raw materials into a direct-reduction shaft furnace and introducing a reducing gas to the shaft furnace to reduce the pellet ore, thus obtaining thermal-state direct reduced iron; c, feeding the thermal-state direct reduced iron to a smelting-separation electric furnace for reduction and smelting separation, thus separating out titanium slag and obtaining vanadium-containing iron liquid; and d, transferring the vanadium-containing iron liquid to a converter for blowing so as to separate out vanadium slag and semisteel. According to the gas-based shaft furnace direct reduction-electric furnace smelting separation process of vanadium titano-magnetite, the shortcomings of the existing process are improved, effective and clean separation of titanium, vanadium and iron is realized, the recovery and utilization rate of vanadium and titanium metal elements is improved and energy consumption and equipment one-time investment are reduced; and therefore, the process is suitable for large-scale production.
Owner:CISDI ENG CO LTD

Process and device for producing calcium carbide by using powder raw materials through two-stage method

The invention relates to a process for producing calcium carbide by using powder raw materials through the two-stage method, which comprises the following steps: leading power carbon-containing material, powder calcium-containing material and oxygen to burn, increasing the temperature of furnace materials in a vertical furnace to above 1300 DEG C, leading the hot furnace materials discharged from the bottom of the vertical furnace to enter into an electric arc furnace, increasing the temperature of the hot furnace materials to 1700-2200 DEG C under the thermal effect of electric arc of an electrode, and carrying out reaction for generating the calcium carbide. Gas containing solids in the vertical furnace is discharged by a furnace gas outlet pipe at the top of the vertical furnace and separated by a cyclone dust collector from, secondary dust collection, residual heat recovery and cloth bag dust collection are carried out on the separated gas to reduce the dust content to below 1-5mg / Nm3, the temperature is reduced to 30-45 DEG C, and then the gas can be recycled as fuel gas or chemical raw material gas. The process has the advantages of powder raw materials, low energy consumption, low cost, continuous production and high grade of the calcium carbide.
Owner:山西亿众公用事业有限公司

Conversion of coke oven gas carbon dioxide and gas-based shaft kiln directly reduced iron production method

ActiveCN101392192AMeeting Direct Reduction NeedsIncreased CO contentCombustible gas purificationComing outWater vapor
The invention discloses a method for conversing carbon oxide in coal oven gas and directly reducing Fe in a gas-based shaft furnace. The coal oven gas, to which initial purification treatment is carried out in a coking plant, is subjected to deep purification and desulfurization treatment and then is used as virgin gas, while oxygen, the carbon oxide and water vapour are used as a gas transforming agent and sent into a reformer for conversion, and reforming gas is used as reducing gas for directly reducing the Fe in the gas-based shaft furnace. Part of the gas that comes out from the top of the shaft furnace is used as fuel gas which is then used as fuel for a heating furnace; and part of the gas is used as process gas which returns to the shaft furnace as the reducing gas after being treated. The method solves a new gas source for the direction reduction in the gas-based shaft furnace and pertains to a new and highly efficient usage method of the coal oven gas. Compared with the current reforming gas from water vapour, the H2 / CO ratio of the reforming gas reduces from 4.6 of the reforming gas from the water vapour to 1.5 and is adjustable between 4.6 and 1.5.
Owner:JIANGSU PROVINCE METALLURGICAL DESIGN INST

Microwave heating method and apparatus for iron oxide reduction

A method and apparatus for reducing iron oxides using microwave heating in a furnace chamber which is sealed against the entrance of air reduces the energy required and produces a low temperature reduction and allows the recovery of combustible synthetic gas as a byproduct of the process. Avoidance of the reduction of sulfur, phorphorus and silica is also insured, as is the need to reduce the silica content of the feed material prior to reducing the ore. A continuous rotary hearth furnace, a rotary kiln, a linear conveyor and vertical shaft furnace chamber configurations are described. A secondary heating zone can also be included to process the reduced iron into iron nuggets or liquid metallic iron.
Owner:HWANG JIANN YANG +1

Direct reduction process for producing spongy iron from CH4-rich coal gas

The invention discloses a direct reduction process for producing spongy iron from CH4-rich coal gas, which comprises the following steps: a, inputting CH4-rich coal gas subjected to pressure regulation and gas-based shaft furnace top gas sequentially subjected to cooling, dust removal and pressurization treatment into an outer converter, supplementing steam taken as modification reaction oxidizer of CH4 into the outer converter, and enabling CH4, H2O and CO2 in the outer converter to be subjected to modification reaction under the effect of a catalyst to generate high-temperature reducing coal gas mainly containing CO and H2; and b, inputting the high-temperature reducing coal gas generated in the outer converter into a gas-based shaft furnace to directly reduce iron ores to generate spongy iron. According to the invention, CO2 in the top gas is fully utilized to generate CO so as to provide reducing gas, thereby reducing the discharge of CO2, omitting the coal gas decarburization procedure and ensuring that the process is simple; and CH4 in the raw gas is subjected to thorough reaction, and the temperature of the high-temperature reducing coal gas is controlled at 850 DEG C, thereby realizing that the utilization efficiency of the raw gas is high, and avoiding the problems of blockage and shaft furnace cementation caused by a great amount of carbon precipitate of CH4 at high temperature.
Owner:CISDI ENG CO LTD

Multi-target evaluation optimization method based on group decision making retrieval strategy

InactiveCN102540879ARealize rationality evaluationQuality improvementAdaptive controlImage retrievalPhase retrieval
The invention discloses a multi-target evaluation optimization method based on a group decision making retrieval strategy and a multi-target evaluation structure for the optimization calculation of set values. The method comprises the following steps of: defining an encoding function; randomly assigning weights for initialization; performing case retrieval after decoding; calculating individual adaptability; judging whether the accuracy meets requirements or not (outputting optimized weights if the accuracy meets the requirements, otherwise, performing the case retrieval again); obtaining final weights by adopting group decision making; calculating case similarity to obtain new retrieval results; judging whether new cases to be retrieved exist or not; calculating product quality, product yield and an energy consumption index within a unit time; evaluating the set values; judging whether to perform compensation and correction on the set values or not; and outputting final set values. The method and the structure are applied to control over the roasting process of a shaft furnace in the metallurgical industry; the rationality of the set values can be evaluated; the quality of roasted ore is improved by 2 percent, the yield of the roasted ore is improved by 4 percent, and energy consumption is reduced by 5 percent; and optimal target values of production indexes are realized, the quality of the roasted ore is improved, gas consumption in a production process is reduced, and the aims of energy saving and consumption reduction are fulfilled.
Owner:BEIJING UNIV OF TECH

Method and apparatus for preparing calcium carbide by oxygen-fuel blowing of high furnace

InactiveCN1843907AReduce manufacturing costRealize the comprehensive utilization of resourcesChemical industryCalcium carbideFerrosiliconHearth
The invention relates to field of preparing calcium carbide with oxygen jetting in tower furnace. The calcium carbonate is heat decomposed into calcium oxide and reduced to calcium carbide by carbon material by jetting with preheating oxygen or oxygen-enriched air. The device comprises: tower furnace and systems of feeding, charging, oxygen producing, heating air, blasting air, oxygen enriching, jetting, cooling, cleaning and recoverying coal gas and recovering calcium carbide and ferrosilicon. The ration between said furnace height and furnace hearth diameter is less than or equal to 3.5, and diameter ratio between furnace hearth and furnace hearth is 0.8-1.1. The invention is to produce calcium carbide of 80%, the proportioning of raw material is lime carbonate: coke: fluorite =(1.2-2.0): (1.5-4.0): (0.039-0.046); jetting material is coal powder, light oil or natural gas; relative oxygen-enriched air amount, the xygen-enriched rate is 9-39%, and prepares side products of calcium carbide of more than 65%, ferrosilicon more than or equal to 54% and carbon monoxide of more than or equal to 54% at high temperature. The invention is characterized by energy saving, high quality and environmental protection.
Owner:岳书才

Method for producing gas-based directly reduced iron by utilizing non-catalytic conversion of coke-oven gas, and system thereof

The invention relates to a method for producing gas-based directly reduced iron by utilizing the non-catalytic conversion of a coke-oven gas, and a system thereof. The method comprises the following steps: mixing the coke-oven gas obtained after routine purification and fine desulfurization treatment with a mixed gas comprising one or above two of a converter gas, a blast furnace gas and a purified tail gas to form a raw material gas mixture, and partially combusting the raw material gas mixture and an oxygen-containing gas at a converter burner outlet at a controlled flame temperature of 1100-2300DEG C for the conversion of hydrocarbons in the coke-oven gas and carbon dioxide or water vapor to generate a synthetic gas containing H2 and CO; and allowing the synthetic gas containing H2 and CO to enter a shaft furnace and reduce iron oxide in order to produce reduced iron, and cooling, washing, decarburizing, desulphurizing and purifying a reduced tail gas discharged from a shaft furnace to obtain a purified tail gas. The invention also provides a system for producing the gas-based directly reduced iron by utilizing the non-catalytic conversion of the coke-oven gas.
Owner:CHINA UNIV OF PETROLEUM (BEIJING) +1

Optimized ore blending method based on sintering-pelletizing-ironmaking linkage

The invention discloses an optimized ore blending method based on sintering-pelletizing-ironmaking linkage, and belongs to the technical field of optimized ore blending before ironmaking. The method comprises the steps: 1, building a model, building a molten iron cost calculation model, wherein the calculation model comprises a sintering mixture calculation module, a pelletizing mixture calculation module and a shaft furnace mixture calculation module; 2, setting a constraint condition, and setting constraint conditions of all raw materials according to the performance difference of sinteringpowder, pelletizing fine powder and lump ore; 3, calculating the cost of iron per ton: calculating the cost of the iron per ton through combining with the price and performance conditions of the resources in the iron ore market, carrying out the continuous iteration calculation through a planning solving equation, and solving the raw material ratio when the cost is minimum. Through combining withthe conditions of resources in the iron ore market and the effective chemical components, the method takes the cost of molten iron as an optimization target, performs the continuous iteration calculation through the planning solving equation, solves the optimal raw material ratio, and achieves the purpose of optimizing the ore blending.
Owner:LIUZHOU IRON & STEEL +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products