Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

4148 results about "Sulfidation" patented technology

Sulfidation (British spelling also sulphidation) is a process of installing sulfide ions in a material or molecule. The process is widely used to convert oxides to sulfides but is also related to corrosion and surface modification.

Sorbent composition, process for producing same and use in desulfurization

Particulate sorbent compositions comprising a mixture of zinc oxide, silica, alumina and a substantially reduced valence nickel are provided for the desulfurization of a feedstream of cracked-gasoline or diesel fuels in a desulfurization zone by a process which comprises the contacting of such feedstreams in a desulfurization zone followed by separation of the resulting low sulfur-containing stream and sulfurized-sorbent and thereafter regenerating and activating the separated sorbent before recycle of same to the desulfurization zone.
Owner:CHINA PETROLEUM & CHEM CORP

Preparation method of hydro-treatment catalyst

The invention discloses a preparation method of a hydro-treatment catalyst. The preparation method comprises the following steps: preparing an alumina carrier, preparing an impregnation solution containing the VIII group metal and VIB group metal, wherein the impregnation solution comprises a proper amount of an organic auxiliary agent containing chelating ligand, then impregnating the alumina carrier into the impregnation solution under a proper ultrasonic treatment condition, and drying so as to obtain the hydro-treatment catalyst. The preparation method utilizes the ultrasonic cavitation effect to properly reduce the viscosity of the impregnation solution; at the same time the complexing capacity between the chelating ligand in the organic auxiliary agent and nickel / cobalt is improved by the catalytic function of the ultrasonic, the interaction force between the chelating ligand and nickel / cobalt is strengthened, thus the active metal component is promoted to highly disperse on the carrier surface, furthermore, the existing state of the active metal on the catalyst surface is improved at the same time, the sulfurization degree and sulfurization uniformity of the active metal are both improved, so the activity and stability of the catalyst are both improved. The catalyst is especially suitable for being used in the hydro-denitrogenation process and hydro-desulfurization process of heavy distillate oil.
Owner:CHINA PETROLEUM & CHEM CORP +1

Lubricating oil composition for internal combustion engines

The present invention relates to a low phosphorus lubricating oil composition for internal combustion engines which demonstrates fuel economy benefits while also providing high temperature oxidation, piston deposits, and wear. The lubricating oil composition of the present invention comprises: a) major amount of a base oil of lubricating viscosity; b) from about 0.1 to 10 wt % of an overbased alkaline earth metal alkyl aryl sulfonate detergent having a total base number (TBN) of about 25 to 500; c) from about 0.02 to 10 wt % of a oxymolybdenum-containing complex; d) from about 0.1 to 5 wt % of a friction modifier; and e) from about 0.2 to 10 wt % of an antioxidant selected from the group consisting of a diphenylamine type, a sulfurized ester-containing compound and mixtures thereof; wherein the total concentration of the oxymolybdenum-containing complex and antioxidant must be at least 1.3 wt %, based on the total weight of the lubricating oil composition and wherein the phosphorus content of the total lubricating oil composition is 0.08 wt % or less, based on the total weight of the lubricating oil composition.
Owner:CHEVRON ORONITE CO LLC

Method for reducing concentrate magnesium oxide content in copper-nickel sulfide ore flotation

The invention relates to a method for reducing concentrate magnesium oxide content in copper-nickel sulfide ore flotation. The method includes steps of firstly adding complexing agent oxalic acid, citric acid, tartaric acid, quadrol and EDTA (ethylene diamine tetraacetic acid), cleaning active ions of copper and nickel on the surface of magnesium-contained gangue mineral such as serpentine, removing flotation activity of sulfide ore collector such as xanthogenate, and adding composition agent to suppress gangue mineral. Ore pulp is treated by complexing agent, the flotation environment is improved, and floatability difference between copper-nickel sulfide mineral and magnesium-contained gangue mineral is increased. By combined inhibitor, serpentine and talc gangue mineral are suppressed, and magnesium-reducing effect is better; nickel recovery rate is increased to some extent as compared with that of actual production. Meanwhile, content of magnesium oxide in concentrate is reduced, and melting cost is lowered.
Owner:ZHENGZHOU MINERALS COMPOSITIVE UTILIZATION RES INST CHINESE GEOLOGICAL ACAD

Heavy-metal-polluted site soil leaching remediation method and device

The invention relates to a heavy-metal-polluted site soil leaching remediation method and a heavy-metal-polluted site soil leaching remediation device. The method comprises the steps that: (1) soil pollutant types, densities, particle composition, pH value and organic matter content are detected; (2) the polluted soil is flushed by using water; a leaching agent is added, and the soil is leached; (3) separation is carried out by using a roller screen; on-screen substances are backfilled, and under-screen substances are subjected to fine separation; (4) under-screen substances are processed by using a hydrocyclone separation device; when obtained sand reaches a test standard, the sand can be backfilled; (5) alkali is added for regulating the pH value, and a heavy metal precipitating agent Na2S is added, such that heavy metal is converted into metal sulfide precipitate; (6) after the heavy metal precipitation reaction, a flocculant is added, such that coagulating sedimentation is carried out; after coagulating sedimentation, solid-liquid separation is carried out by using a plate-and-frame filter press; and (7) pH value of wastewater produced by solid-liquid separation is regulated by adding sulfuric acid, and is recycled in the leaching step. The method provided by the invention has the technical effects that: after heavy-metal-polluted soil is processed, heavy metal pollutants can be separated with physical separation (particle separation) and chemical extraction methods; and the leaching liquid (water) can be repeatedly utilized.
Owner:DONGJIANG ENVIRONMENTAL

Electrode for an Ignition Device

ActiveUS20070290591A1Resistance to oxidationResistance to wearSparking plugsCeriumHafnium
An electrode for an ignition device is made from a Ni-based nickel-chromium-iron alloy which has improved resistance to high temperature oxidation, sulfidation, corrosive wear, deformation and fracture includes, by weight of the alloy: 14.5-25% chromium; 7-22% iron; 0.2-0.5% manganese; 0.2-0.5% silicon; 0.1-2.5% aluminum; 0.05-0.15% titanium; 0.01-0.1% total of calcium and magnesium; 0.005-0.5% zirconium; 0.001-0.01% boron, and the balance substantially Ni. It may also include at least one rare earth element selected from the group consisting of: yttrium, hafnium, lanthanum, cerium and neodymium in amounts ranging from 0.01-0.15% by weight, and incidental impurities, including cobalt, niobium, molybdenum, copper, carbon, lead, phosphorus or sulfur. These total of these impurities will typically be controlled to limits of 0.1% cobalt, 0.05% niobium, 0.05% molybdenum, 0.01% copper, 0.01% carbon, 0.005% lead, 0.005% phosphorus and 0.005% sulfur. The ignition device may be a spark plug which includes a ceramic insulator, a conductive shell, a center electrode disposed in the ceramic insulator having a terminal end and a sparking end with a center electrode sparking surface, and a ground electrode operatively attached to said shell having a ground electrode sparking surface, the center electrode sparking surface and the ground electrode sparking surface defining a spark gap therebetween. At least one of the center electrode or the ground electrode includes the solution-strengthened Ni-based nickel-chromium-iron alloy. The Ni-based nickel-chromium-iron alloy electrodes of the invention may also include a core with thermal conductivity greater than that of the Ni-based nickel-chromium-iron alloy, such as copper or silver or their alloys.
Owner:FEDERAL MOGUL WORLD WIDE LLC

Synthesis of germanium sulphide and related compounds

The invention relates to synthesis of germanium sulphide glasses and optical devices formed therefrom. In a chemical vapour deposition process, germanium tetrachloride is reacted with hydrogen sulphide at temperatures in the range 450-700° C. to form germanium sulphide. Lower temperatures within this range of 450-550° C. directly produce a glass, whereas higher temperatures within the range of 600-700° C. produce a crystalline powder which can then be reduced to a glass by subsequent melting and annealing. The reaction is preferably carried out at atmospheric pressure or slightly higher. Thin films and bulk glasses suitable for optical waveguides can be formed directly in one processing step as can powders and microspheres. The materials synthesised are of a high purity with low oxide impurities and only trace levels of transition metal ions.
Owner:UNIV OF SOUTHAMPTON

Nickel disulfide carbon nano composite material and preparation method and application thereof

The invention relates to a nickel disulfide carbon nano composite material and a preparation method and an application thereof, wherein the composite material is formed by coating a nickel disulfide nanosheet with a carbon layer. The preparation method comprises the following steps of preparing a nickel hydroxide nanosheet precursor by a hydrothermal method, performing magnetic stirring and dispersing in deionized water to obtain a uniform dispersion liquid of the nickel hydroxide nanosheet precursor, adding a buffering agent tris(hydroxymethyl) aminomethane hydrochloride, and adjusting the pHvalue to be 8.5 by adopting an alkali solution with the pH value of 13, adding dopamine hydrochloride, and magnetically stirring at room temperature for in-situ polymerization, and carrying out washing and centrifugally drying to obtain a nickel hydroxide nanosheet precursor/polydopamine composite material, and carrying out heat treatment and vulcanization with sublimed sulfur powder in a tubularfurnace in nitrogen atmosphere at a certain temperature to obtain the composite material. The preparation process is simple, easy to operate, green and non-toxic and friendly in material preparationprocess; and the prepared nickel disulfide carbon nano composite material is stable in structure, uniform in morphology and high in dispersion. The obtained nickel disulfide carbon nano composite material can be an ideal electrode material of a high-performance lithium ion battery, a supercapacitor and other new energy devices.
Owner:DONGHUA UNIV

Regeneration and rejuvenation of supported hydroprocessing catalysts

Methods for rejuvenation of supported metallic catalysts comprised of a Group VIII metal, a Group VIB metal, making use of these metals, an organic complexing agent, and optionally an organic additive, are provided. The rejuvenation includes stripping and regeneration of a spent or partially spent catalyst, followed by impregnation with metals and at least one organic compound. The impregnated, regenerated catalysts are dried, calcined, and sulfided. The catalysts are used for hydroprocessing, particularly hydrodesulfurization and hydrodenitrogenation, of hydrocarbon feedstocks.
Owner:EXXON RES & ENG CO

Technology of enhanced-dispersion partial selective and bulk flotation of lead and zinc sulfide ores under low and high alkalinity

The invention discloses a technology of enhanced-dispersion partial selective and bulk flotation of lead and zinc sulfide ores under low and high alkalinity. During grading of the lead and zinc sulfide ores, sodium hexametahposphate is taken as a dispersion agent and directly added into a ball mill, the ores are ground till the ores with the size of 0.074mm account for 67%-70%, lime is taken as an adjusting agent, zinc sulfate and sodium sulfite are taken as inhibitors, dithiophosphate BA and diethyldithiocarbamate are taken as collectors, and selective flotation of part of lead minerals with good floatability can be performed under low alkalinity; then xanthate and the diethyldithiocarbamate are taken as collectors, and the flotation of the lead minerals is further performed under high alkalinity; copper sulfate is added in lead flotation tailings for activation, butyl xanthate is further taken as the collector for flotation of zinc blende and part of pyrite, and zinc-sulfur separation flotation is further performed on zinc-sulfur mixed concentrate; and sulfuric acid is added in zinc flotation tailings for activation, and the xanthate is taken as the collector for flotation of the remaining pyrite. By adopting the technology, the lead-silver recovery rate can be improved, the using amount of lime and sulfuric acid can be reduced, the circulating amount of middlings can be reduced, the ore dressing cost can be reduced and the grade of the concentrate can be improved.
Owner:KUNMING UNIV OF SCI & TECH

Comprehensive utilization method for laterite-nickel ore

The invention relates to an environmental-friendly comprehensive utilization method for a laterite-nickel ore, which comprises the following steps of: (1) grinding the laterite-nickel ore, mixing with sulfuric acid, roasting, dissolving out roasted clinker and filtering to obtain silicon dioxide and dissolution liquid; (2) deironing the dissolution liquid to obtain liquid No.2 and filter residue (iron compounds), wherein the liquid No.2 comprises aluminum, nickel and magnesium and can be treated by the step (3) or (4); (3) precipitating the aluminum in the liquid No.2 by using alkali, filtering, precipitating the nickel in filtrate by using sodium sulfide, filtering, precipitating the magnesium by using the alkali, and treating filter residue to obtain aluminum oxide, nickel hydroxide, nickel sulfide and magnesium oxide respectively; and (4) precipitating the aluminum and the nickel in the liquid No.2 by using the alkali, treating mixed slag containing the aluminum and the nickel by using the alkali to obtain aluminum hydroxide and nickel hydroxide products, and precipitating the magnesium in filtrate subjected to aluminum and nickel precipitation by using ammonia or ammonium saltto obtain a magnesium oxide product. The method is suitable for treating various laterite-nickel ores, three wastes (waste gas, waste water and waste residue) are not generated, and valuable components magnesium, nickel, iron, aluminum and silicon in the laterite-nickel ore are separated and extracted.
Owner:NORTHEASTERN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products