Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

345 results about "Aluminide" patented technology

An aluminide is a compound that has aluminium with more electropositive elements. Since aluminium is near the nonmetals on the periodic table, it can bond with metals differently from other metals. The properties of an aluminide would be intermediate between a metal alloy and an ionic compound.

Production of an aluminide containing ceramic moulding

PCT No. PCT / EP95 / 03347 Sec. 371 Date Nov. 19, 1997 Sec. 102(e) Date Nov. 19, 1997 PCT Filed Aug. 23, 1995 PCT Pub. No. WO96 / 20902 PCT Pub. Date Jul. 11, 1996A ceramic formed body containing a) 5 to 70 vol % of at least on intermetallic aluminide phase which additionally may contain aluminum or / and aluminum alloy, and b) 30 to 95 vol % of one or more ceramic phases which form a solid interconnecting skeleton and wherein the intermetallic phase or phases consist of predominantly interconnected areas with average sizes of 0.1 to 10 mu m, is obtained by sintering, in a non-oxidizing atmosphere, of a powder metallurgically green body which consists of a mixture of finely dispersed powder of aluminum, one or more ceramic substances and maybe further metals such that the mixture contains at least one oxide ceramic or / and metallic powder which, during sintering, reacts with aluminum thereby forming an aluminide and maybe Al2O3.
Owner:CLAUSSEN NILS

Environment-resistant platinum aluminide coatings, and methods of applying the same onto turbine components

In a method for coating a surface of a turbine component with an environment-resistant aluminide, a coating is formed by cold gas-dynamic spraying a powder material on the turbine component surface, the powder material comprising aluminum, platinum, and at least one additional metal selected from the group consisting of nickel, chromium, hafnium, silicon, yttrium, rhenium, zirconium, cobalt, and tantalum. After forming the coating, at least one thermal diffusion treatment is performed on the turbine component to metallurgically homogenize the coating and thereby form an aluminide coating that includes by weight about 12 to about 30% aluminum, up to about 50% platinum, about 2 to about 25% chromium, about 1 to about 5% hafnium, about 1 to about 5% silicon, about 0.1 to about 1% yttrium, and about 1 to about 3% Zr, and nickel.
Owner:HONEYWELL INT INC

High-strength metal aluminide-containing matrix composites and methods of manufacture the same

(a) The metal matrix composite is suitable for the manufacture of flat or shaped titanium aluminide, zirconium aluminide, or niobium aluminide articles and layered metal composites having improved mechanical properties such as lightweight plates and sheets for aircraft and automotive applications, thin cross-section vanes and airfoils, heat-sinking lightweight electronic substrates, bulletproof structures for vests, partition walls and doors, as well as sporting goods such as helmets, golf clubs, sole plates, crown plates, etc. The composite material consists of a metal (e.g., Ti, Zr, or Nb-based alloy) matrix at least partially intercalated with a three-dimensional skeletal metal aluminide structure, whereby ductility of the matrix metal is higher than that of the metal aluminide skeleton. The method for manufacturing includes the following steps: (a) providing an aluminum skeleton structure having open porosity of 50-95 vol. %, (b) filling said skeleton structure with the powder of a reactive matrix metal, (c) compacting the aluminum skeleton / matrix powder composite preform by cold rolling, cold die pressing, cold isostatic pressing, and / or hot rolling, (d) consolidating the initial or compacted composite preform by sintering, hot pressing, hot rolling, hot isostatic pressing, and / or hot extrusion to provide, at least partially, a reaction between aluminum skeleton and matrix metal powder, and (e) diffusion annealing followed by any type of heat treatment needed to provide predetermined mechanical and surface properties of the resulting metal matrix composite. The combination of ductile matrix and metal aluminide skeletal structure results in significant improvement of mechanical properties of the composite material, especially hot strength. This high-strength aluminide-based material can also be used as a core component in multilayer metal matrix composites.
Owner:ADVANCE MATERIAL PRODS ADMA PRODS

Aluminide or chromide coating of turbine engine rotor component

A turbine engine rotor component, such as a compressor or turbine disk or seal element, is protected from corrosion by depositing an aluminum or chromium coating on the component. The deposition can be performed by a vapor deposition process, such as metal organic chemical vapor deposition (MOCVD), to a coating thickness of from about 0.2 to about 50 microns, typically from about 0.5 to about 3 microns. In one embodiment, the method is conducted in a vapor coating container having a hollow interior coating chamber, and includes the steps of loading the coating chamber with the component to be coated; and flowing a tri-alkyl aluminum or chromium carbonyl coating gas into the loaded coating chamber at a specified temperature, pressure, and time to deposit an aluminum or chromium coating on the surface of the component. The coated component is then heated in a nonoxidizing atmosphere to a specified temperature to form an aluminide or chromide coating on the surface. The coated component is typically then heated or maintained at an elevated temperature in the presence of oxygen to form an oxide coating on the surface of the component.
Owner:GENERAL ELECTRIC CO

Method for manufacturing fully dense metal sheets and layered composites from reactive alloy powders

The method is suitable for the manufacture of flat or shaped titanium aluminide articles and layered metal matrix composites such as lightweight plates and sheets for aircraft and automotive applications, thin cross-section vanes and blades, composite electrodes, heat-sinking lightweight electronic substrates, bulletproof structures for vests, partition walls and doors, as well as for sporting goods such as helmets, golf clubs, sole plates, crown plates, etc. The method includes the following steps: (a) forming a porous preform of the reactive powder alloy or a porous multi-layer composite preform consisting of reactive powder metals and alloys by consolidation using at least one method selected from low-temperature loose sintering in vacuum, high-temperature loose sintering in vacuum, low-pressure sintering in an inert gas, cold pressing, direct powder rolling, isostatic or die pressing, and other means of room temperature and warm temperature consolidation, and / or combination thereof, to provide the density not less than 25% from the theoretical density of said reactive alloy; (b) hot consolidating by hot pressing said preform, hot rolling, hot isostatic pressing, or hot extrusion to obtain the density of 98-100% from the theoretical density of said reactive alloy; (c) additional sintering and / or annealing at the temperature being at least 900° C. to decrease the residual porosity, control the microstructure, and improve the mechanical properties, especially ductility and / or plasticity of the resulting metal sheets or layered composites. The hot pressing is carried out at the temperature ranging 950-1700° C., preferably at 1250-1450° C., and at pressure ranging 50-350 kg / cm<2>. The HIP is carried out at the temperature ranging 1250-1350° C. and at pressure ranging 15000-40000 psi. The layered composite preform is manufactured by individual loose sintering, one layer of the composite at a time, and assembling them in the desired order. The composite consists of layers of titanium and / or titanium hydride, Ti-6Al-4V alloy, alpha-titanium aluminide alloy, beta-titanium aluminide alloy, and gamma-titanium aluminide alloy in any combinations.
Owner:ADVANCED MATERIALS PRODS

Slurry diffusion aluminide coating composition and process

A slurry and slurry coating process for forming a diffusion aluminide coating on a substrate, including internal surfaces within the substrate. The process involves preparing a slurry of a powder containing a metallic aluminum alloy having a melting temperature higher than aluminum, an activator capable of forming a reactive halide vapor with the metallic aluminum, and a binder containing an organic polymer. The slurry is applied to surfaces of the substrate, which is then heated to burn off the binder, vaporize and react the activator with the metallic aluminum to form the halide vapor, react the halide vapor at the substrate surfaces to deposit aluminum on the surfaces, and diffuse the deposited aluminum into the surfaces to form a diffusion aluminide coating. The process can be tailored to selectively produce an inward or outward-type coating. The binder burns off to form an ash residue that can be readily removed.
Owner:GENERAL ELECTRIC CO

Chromium and active elements modified platinum aluminide coatings

The present invention provides a chromium and active elements modified platinum aluminide coating that may be used on a surface of a gas turbine engine component such as a turbine blade. The coating may be used as a protective coating that impedes the progress of corrosion, oxidation, and sulfidation in superalloy materials that comprise the substrate of the turbine blade. Additionally, the coating may be used as a bond coat onto which a thermal barrier coating is deposited. The presence of active elements as well as chromium and platinum provides improved corrosion, oxidation, and sulfidation resistance. The coating is applied using an electron beam physical vapor deposition. The coating is applied alternatively using selected sequential diffusion processing steps involving chromium, platinum and aluminum.
Owner:HONEYWELL INT INC

Process for partial stripping of diffusion aluminide coatings from metal substrates, and related compositions

A method for selectively removing portions of a diffusion aluminide coating from a substrate is described. The coating is treated with an aqueous composition based on an acid having the formula HxZrF6, wherein x is an exemplary 2. The coating being removed is usually a noble metal-aluminide coating, and the substrate is typically a superalloy. Related compositions are also described.
Owner:GENERAL ELECTRIC CO

Chromium and active elements modified platinum aluminide coatings

The present invention provides a chromium and active elements modified platinum aluminide coating that may be used on a surface of a gas turbine engine component such as a turbine blade. The coating may be used as a protective coating that impedes the progress of corrosion, oxidation, and sulfidation in superalloy materials that comprise the substrate of the turbine blade. Additionally, the coating may be used as a bond coat onto which a thermal barrier coating is deposited. The presence of active elements as well as chromium and platinum provides improved corrosion, oxidation, and sulfidation resistance. The coating is applied using an electron beam physical vapor deposition. The coating is applied alternatively using selected sequential diffusion processing steps involving chromium, platinum and aluminum.
Owner:HONEYWELL INT INC

Strengthened bond coats for thermal barrier coatings

A strengthened bond coat for improving the adherence of a thermal barrier coating to an underlying metal substrate to resist spallation without degrading oxidation resistance of the bond coat. The bond coat comprises a bond coating material selected from the group consisting of overlay alloy coating materials, aluminide diffusion coating materials and combinations thereof. Particles comprising a substantially insoluble bond coat strengthening compound and having a relatively fine particle size of about 2 microns or less are dispersed within at least the upper portion of the bond coat in an amount sufficient to impart strengthening to the bond coat, and thus limit ratcheting or rumpling thereof.
Owner:GENERAL ELECTRIC CO

Cigarette filter using intermetallic compounds

A filter such as a cigarette filter having a metal reagent which selectively binds with a gaseous component of a gas stream such as tobacco smoke. The metal reagent comprises nanometer or micrometer size clusters of a transition metal or alloy containing a transition metal. The transition metal can be incorporated in an intermetallic compound such as titanium aluminide or iron aluminide. The metal clusters can be incorporated in or on a support material such as silica gel, porous carbon or a zeolite. The metal reagent can remove the gaseous component by selectively binding to unsaturated hydrocarbons such as 1,3-butadiene. The binding can occur by insertion of a metal atom of the metal reagent into a C—H bond or a C—C bond of the gaseous component.
Owner:PHILIP MORRIS USA INC

Methods for manufacturing an additively manufactured fuel contacting component to facilitate reducing coke formation

A method for manufacturing a fuel contacting component that facilitates reducing coke formation on at least one surface of the fuel contacting component is disclosed herein. The method includes applying a slurry composition including a powder including aluminum to the component surface, wherein the fuel contacting component is formed by an additive manufacturing process. The slurry composition is heat treated to diffuse the aluminum into the component surface. The heat treatment comprises forming a diffusion aluminide coating on the component surface, wherein the diffusion coating comprises a diffusion sublayer formed on the component surface and an additive sublayer formed on the diffusion sublayer. The method further comprises removing the additive sublayer of the diffusion aluminide coating with at least one aqueous solution such that the diffusion sublayer and the component surface are substantially unaffected, wherein the diffusion layer facilitates preventing coke formation on component surface.
Owner:GENERAL ELECTRIC CO

Intermetallic Aluminide Polycrystalline Diamond Compact (PDC) Cutting Elements

Machining and cutting tools including, but not limited to, rotary drill bits, mining tools, milling tools, wood shredders, reamers and wire dies formed with at least one substrate having a layer of polycrystalline diamond disposed thereon. The polycrystalline diamond layer may be generally described as a polycrystalline diamond compact (PDC) or PDC layer. The PDC may be formed by using an intermetallic aluminide catalyst. One example of such catalyst may include nickel aluminide used to form diamond to diamond bonds between adjacent diamond particles.
Owner:HALLIBURTON ENERGY SERVICES INC

Protective layer for optical coatings with enhanced corrosion and scratch resistance

An oxidizable metal silicide or metal aluminide is used as one of the outer layers of an optical coating to provide a corrosion and scratch resistant barrier. This layer is initially deposited in an unoxidized or partially oxidized state. In this chemical state it provides corrosion protection to the layers underneath. The metal compound or intermetallic layer has hardness properties greater than most metals and therefore provides significant scratch protection.
Owner:AGC FLAT GLASS NORTH AMERICA INC

Aluminide coating of turbine engine component

A method for forming an aluminide coating on a turbine engine component having an external surface and an internal cavity defined by an internal surface that is connected to the external surface by at least one hole. The method is conducted in a vapor coating container having a hollow interior coating chamber, and includes the steps of loading the coating chamber with the component to be coated; flowing a tri-alkyl aluminum coating gas into the loaded coating chamber at a specified temperature, pressure, and time to deposit an aluminum coating on the external and internal surfaces of the component; and heating the component in a nonoxidizing atmosphere at a specified temperature and time to form an aluminide coating on the external and internal surfaces. The coated component is typically then maintained at an elevated temperature in the presence of oxygen to form an oxide coating on the external and internal surfaces of the component. In one embodiment, the turbine engine component is a turbine engine blade having an external surface and an internal cooling cavity having an internal surface that is connected to the external surface by cooling holes.
Owner:GENERAL ELECTRIC CO

Low sulfur article having a platinum-aluminide protective layer, and its preparation

A coated article is prepared by furnishing an nickel-base article substrate having a free sulfur content of more than 0 but less than about 1 part per million by weight. A protective layer is formed at a surface of the article substrate. The protective layer includes a platinum aluminide diffusion coating. The protective layer may be substantially yttrium-free, or have a controlled amount of yttrium. A ceramic layer may overlie the protective layer.
Owner:GENERAL ELECTRIC CO

High-strength metal aluminide-containing matrix composites and methods of manufacture the same

(a) The metal matrix composite is suitable for the manufacture of flat or shaped titanium aluminide, zirconium aluminide, or niobium aluminide articles and layered metal composites having improved mechanical properties such as lightweight plates and sheets for aircraft and automotive applications, thin cross-section vanes and airfoils, heat-sinking lightweight electronic substrates, bulletproof structures for vests, partition walls and doors, as well as sporting goods such as helmets, golf clubs, sole plates, crown plates, etc. The composite material consists of a metal (e.g., Ti, Zr, or Nb-based alloy) matrix at least partially intercalated with a three-dimensional skeletal metal aluminide structure, whereby ductility of the matrix metal is higher than that of the metal aluminide skeleton. The method for manufacturing includes the following steps: (a) providing an aluminum skeleton structure having open porosity of 50-95 vol. %, (b) filling said skeleton structure with the powder of a reactive matrix metal, (c) compacting the aluminum skeleton / matrix powder composite preform by cold rolling, cold die pressing, cold isostatic pressing, and / or hot rolling, (d) consolidating the initial or compacted composite preform by sintering, hot pressing, hot rolling, hot isostatic pressing, and / or hot extrusion to provide, at least partially, a reaction between aluminum skeleton and matrix metal powder, and (e) diffusion annealing followed by any type of heat treatment needed to provide predetermined mechanical and surface properties of the resulting metal matrix composite. The combination of ductile matrix and metal aluminide skeletal structure results in significant improvement of mechanical properties of the composite material, especially hot strength. This high-strength aluminide-based material can also be used as a core component in multilayer metal matrix composites.
Owner:ADVANCE MATERIAL PRODS ADMA PRODS

System for applying a diffusion aluminide coating on a selective area of a turbine engine component

A method for applying diffusion aluminide coating on a selective area of a turbine engine component and the coating produced by that method is disclosed. A quartz infrared lamp heats only substantially the localized area of the component to be coated, rather than the complete part. Either halide activated or non-activated tape is applied on the area to be coated and is held in place during coating using a high temperature dimensionally stable tape holder manufactured from graphite or ceramic. The quartz infrared lamp is used to heat only the desired area to a coating temperature of about 1800° F. to about 2000° F. under an inert atmosphere for about 3 to about 8 hours to achieve the desired aluminide coating thickness. No powder masking of the machined surface area is required. Due to the localized heating, aluminum vapor generated from the tape will only deposit aluminide coating on the taped area.
Owner:GENERAL ELECTRIC CO

Platinum aluminide coating and method thereof

Platinum containing coatings for corrosion and oxidation protection of a substrate, and platinum electrodeposition methods for coating a substrate. The coating may comprise platinum and at least one supplementary constituent, and the method may involve co-electrodeposition of platinum and the supplementary constituent from a single electrolyte composition. The supplementary constituent may comprise chromium, an oxidation protective reactive element, or an alloy of chromium with a reactive element. Components protected by such coatings are also disclosed.
Owner:HONEYWELL INT INC

Protected alloy surfaces in microchannel apparatus and catalysts, alumina supported catalysts, catalyst intermediates, and methods of forming catalysts and microchannel apparatus

The invention describes microchannel apparatus and catalysts that contain a layer of a metal aluminide or are made in a process in which a metal aluminide layer is formed as an intermediate. Certain processing conditions have surprisingly been found to result in superior coatings. The invention includes chemical processes conducted through apparatus described in the specification. Other catalysts and catalyst synthesis techniques are also described.
Owner:VELOCYS CORPORATION

Method for local application of diffusion aluminide coating

A method includes a component preparation step 10 of exposing local areas (damaged areas of an existing coating) of a base material of a metal component 1 to be coated, and roughening a surface of the base material to a desired surface roughness, a slurry preparation step 12 of preparing a coating slurry that contains a halide activator, a water soluble organic binder, and powder of an aluminum-containing intermetallic compound 3, an application and drying step 14 of applying the coating slurry to the damaged areas of the metal component, and then drying the areas, a packing step 16 of packing the metal component in a heat-resistant container filled with alumina powder, a diffusion treatment step 18 of retaining the heat-resistant container at high temperature in an inert atmosphere or a reducing atmosphere to diffuse aluminum onto the surface of the metal component, and a cleaning step 20 of taking out the metal component from the heat resistant container, and removing a slag from the surface of the metal component.
Owner:IHI CORP

Addition of rare earth elements to improve the performance of self shielded electrodes

A self-shielding welding electrode and a method of making the same are provided. The self-shielding welding electrode contains rare earth aluminide in either the flux or the electrode portion of the electrode. The self-shielding welding electrode contains at least about 0.5% by weight of the flux of rare earth aluminide.
Owner:LINCOLN GLOBAL INC

Process for partial stripping of diffusion aluminide coatings from metal substrates, and related compositions

A method for selectively removing portions of a diffusion aluminide coating from a substrate is described. The coating is treated with an aqueous composition based on an acid having the formula HxZrF6, wherein x is an exemplary 2. The coating being removed is usually a noble metal-aluminide coating, and the substrate is typically a superalloy. Related compositions are also described.
Owner:GENERAL ELECTRIC CO

Coating and coating method for gas turbine engine component

The present invention provides a protective coating for a gas turbine blade or other component wherein the duplex coating includes an aluminum-bearing coating, such as a diffusion aluminide, formed on a first, relatively higher temperature region of the blade / component and a later-applied chromium-bearing diffusion coating formed on an adjacent relatively lower temperature region of the blade / component subject to hot corrosion in service. The chromium-bearing coating is applied after the aluminum-bearing coating by masking that coating and depositing a metallic chromium coating on the adjacent region followed by diffusing the chromium into the blade / component alloy to form a chromium-enriched diffusion coating thereon.
Owner:HOWMET CORPORATION

Nickel-plated brazing product having improved corrosion performance

A brazing product, e.g. a brazing sheet product, having an aluminium layer made of an aluminium alloy comprising silicon in an amount in the range of 2 to 18 weight %, and a layer comprising nickel on the outer surface of the aluminium layer such that taken together the aluminium layer and all layers exterior thereto form the filler metal for a brazing operation. The filler metal has a composition containing at least one element: (i) with a smaller exchange current density for the Hydrogen Evolution Reaction ("HER") than nickel and / or (ii) such that the electro-chemical potential difference between particles of Ni-aluminide(s) of the filler and the aluminium alloy matrix of the filler is reduced. The filler metal's mol-ratio of Ni to such element(s) is in the range of 10:(O.3-30). The invention also relates to a method of manufacturing a brazed assembly using the brazing product, and to a brazed assembly comprising at least one component made of the brazing product.
Owner:CORUS ALUMINUM WALZPRODUKTE GMBH (DE)

Method for aluminide coating of gas turbine engine blade

A method for applying an aluminide coating on a gas turbine engine blade having an external surface and an internal cooling cavity having an internal surface that is connected to the external surface by cooling holes. The method is conducted in a vapor coating container having a hollow interior coating chamber, and includes the steps of loading the coating chamber with the blade to be coated; providing an aluminide coating gas in the loaded coating chamber; flowing an inert carrier gas into the loaded coating chamber comprising the aluminide coating gas at a specified gas flow rate and time to move the aluminide coating gas through the cooling holes and internal cooling cavity and deposit an aluminide coating on the internal surface of the blade; and then flowing an inert carrier gas into the loaded coating chamber comprising the aluminide coating gas at a specified higher temperature and time to deposit an aluminide coating on the external surface of the blade.
Owner:GENERAL ELECTRIC CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products