Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

478results about "Titanates" patented technology

Lithium metal oxide electrodes for lithium cells and batteries

A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO2.(1-x)Li2M′O3 in which 0<x<1, and where M is more than one ion with an average trivalent oxidation state and with at least one ion being Ni, and where M′ is one or more ions with an average tetravalent oxidation state. Complete cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.
Owner:CHICAGO UNIV OF THE +1

Electrocatalyst powders, methods for producing powders and devices fabricated from same

Electrocatalyst powders and methods for producing electrocatalyst powders, such as carbon composite electrocatalyst powders. The powders have a well-controlled microstructure and morphology. The method includes forming the particles from an aerosol of precursors by heating the aerosol to a relatively low temperature, such as not greater than about 400° C.
Owner:CABOT CORP

Polymer nanocomposite implants with enhanced transparency and mechanical properties for administration within humans or animals

Polymer nanocomposite implants with nanofillers and additives are described. The nanofillers described can be any composition with the preferred composition being those composing barium, bismuth, cerium, dysprosium, europium, gadolinium, hafnium, indium, lanthanum, neodymium, niobium, praseodymium, strontium, tantalum, tin, tungsten, ytterbium, yttrium, zinc, and zirconium. The additives can be of any composition with the preferred form being inorganic nanopowders comprising aluminum, calcium, gallium, iron, lithium, magnesium, silicon, sodium, strontium, titanium. Such nanocomposites are particularly useful as materials for biological use in applications such as drug delivery, biomed devices, bone or dental implants.
Owner:PPG IND OHIO INC

Nanotechnology for drug delivery, contrast agents and biomedical implants

A nanocomposite structure comprising a nanostructured filler or carrier intimately mixed with a matrix, and methods of making such a structure. The nanostructured filler has a domain size sufficiently small to alter an electrical, magnetic, optical, electrochemical, chemical, thermal, biomedical, or tribological property of either filler or composite by at least 20%.
Owner:PPG IND OHIO INC

Nanostructured powders and related nanotechnology

Methods to manufacture nanoscale particles comprising metals, alloys, intermetallics, ceramics are disclosed. The thermal energy is provided by plasma, internal energy, heat of reaction, microwave, electromagnetic, direct electric arc, pulsed electric arc and / or nuclear. The process is operated at some stage above 3000K and at high velocities. The invention can be utilized to prepare nanopowders for nanostructured products and devices such as ion conducting solid electrolytes for a wide range of applications, including sensors, oxygen pumps, fuel cells, batteries, electrosynthesis reactors and catalytic membranes.
Owner:PPG IND OHIO INC

Single-crystal-like materials

Polycrystalline materials of macroscopic size exhibiting Single-Crystal-Like properties are formed from a plurality of Single-Crystal Particles, having Self-Aligning morphologies and optionally ling morphology, bonded together and aligned along at least one, and up to three, crystallographic directions.
Owner:RUTGERS THE STATE UNIV

Piezoelectric element, and liquid jet head and ultrasonic motor using the piezoelectric element

There is disclosed a piezoelectric element having, on a substrate, a piezoelectric body and a pair of electrodes which come in contact with the piezoelectric body, wherein the piezoelectric body consists of a perovskite type oxide represented by the following formula (1):(Bi,Ba)(M,Ti)O3  (1)in which M is an atom of one element selected from the group consisting of Mn, Cr, Cu, Sc, In, Ga, Yb, Al, Mg, Zn, Co, Zr, Sn, Nb, Ta, and W, or a combination of the atoms of the plurality of elements.
Owner:CANON KK

Nanoparticle production and corresponding structures

Methods are described that have the capability of producing submicron / nanoscale particles, in some embodiments dispersible, at high production rates. In some embodiments, the methods result in the production of particles with an average diameter less than about 75 nanometers that are produced at a rate of at least about 35 grams per hour. In other embodiments, the particles are highly uniform. These methods can be used to form particle collections and / or powder coatings. Powder coatings and corresponding methods are described based on the deposition of highly uniform submicron / nanoscale particles.
Owner:NEOPHOTONICS CORP

Li4Ti5O12,Li(4-alpha)ZalphaTi5O12 or Li4ZbetaTi(5-beta)O12 particles processes for obtaining same and use as electrochemical generators

Synthesis process for new particles of Li4Ti5O12, Li(4-α)ZαTi5O12 or Li4ZβTi(5-β)O12, preferably having a spinel structure, wherein β is greater than 0 and less than or equal to 0.5 (preferably having a spinel structure), α representing a number greater than zero and less than or equal to 0.33, Z representing a source of at least one metal, preferably chosen from the group made up of Mg, Nb, Al, Zr, Ni, Co. These particles coated with a layer of carbon notably exhibit electrochemical properties that are particularly interesting as components of anodes and / or cathodes in electrochemical generators.
Owner:HYDRO QUEBEC CORP

Aerosol method and apparatus, particulate products, and electronic devices made therefrom

Metal-carbon composite powders and methods for producing metal-carbon composite powders. The powders have a well-controlled microstructure and morphology and preferably have a small average particle size. The method includes forming the particles from an aerosol of powder precursors. The invention also includes novel devices and products formed from the composite powders.
Owner:CABOT CORP

Metal Oxide Nanoporous Material, Coating Composition to Obtain the Same, and Methods of Manufacturing Them

A metal oxide nanoporous material comprises two or more kinds of first metal oxides selected from the group consisting of alumina, zirconia, titania, iron oxide, rare-earth oxides, alkali metal oxides and alkaline-earth metal oxides. The metal oxide nanoporous material has nanopores, each with a diameter of 10 nm or smaller, in which the metal oxides are dispersed homogeneously in the wall forming the nanopores.
Owner:TOYOTA CENT RES & DEV LAB INC

Coated silver-containing particles, method and apparatus of manufacture, and silver-containing devices made therefrom

Provided are silver-containing powders and a method and apparatus for manufacturing the silver-containing particles of high quality, of a small size and narrow size distribution. An aerosol is generated from liquid feed and sent to a furnace, where liquid in droplets in the aerosol is vaporized to permit formation of the desired particles, which are then collected in a particle collector. The aerosol generation involves preparation of a high quality aerosol, with a narrow droplet size distribution, with close control over droplet size and with a high droplet loading suitable for commercial applications.
Owner:CABOT CORP

Battery active material, nonaqueous electrolyte battery and battery pack

The invention provides a battery active material. The battery active material includes monoclinic complex oxide represented by the formula Li x Ti 1-y M1 y Nb 2-z M2 z O 7+ Delta (0 <= x <= 5, 0 <= y <= 1, 0 <= z <= 2, -0.3 <= Delta <= 0.3). In the above formula, M1 is at least one element selected from the group consisting of Zr, Si and Sn, and M2 is at least one element selected from the group consisting of V, Ta and Bi.
Owner:KK TOSHIBA

Titanium comprising nanoparticles and related nanotechnology

Nanoparticles comprising titanium, such as nanoscale doped titanium metal compounds, inorganic titanium compounds, and organic titanium compounds, their methods of manufacture, and methods of preparation of products from nanoparticles comprising titanium are provided.
Owner:PPG IND OHIO INC

Hydrothermal synthesis of perovskite nanotubes

A low-temperature hydrothermal reaction is provided to generate crystalline perovskite nanotubes such as barium titanate (BaTiO3) and strontium titanate (SrTiO3) that have an outer diameter from about 1 nm to about 500 nm and a length from about 10 nm to about 10 micron. The low-temperature hydrothermal reaction includes the use of a metal oxide nanotube structural template, i.e., precursor. These titanate nanotubes have been characterized by means of X-ray diffraction and transmission electron microscopy, coupled with energy dispersive X-ray analysis and selected area electron diffraction (SAED).
Owner:THE RES FOUND OF STATE UNIV OF NEW YORK

Negative electrode active material for nonaqueous electrolyte battery, nonaqueous electrolyte battery, battery pack, and vehicle

A negative electrode active material contains a metal-displaced lithium-titanium oxide of a ramsdellite structure expressed by the formula Li(16 / 7)-xTi(24 / 7)-yMyO8 (where M is at least one metal element selected from the group consisting of Nb, Ta, Mo, and W, and x and y are respectively numbers in the range of 0<x<16 / 7 and 0<y<24 / 7).
Owner:KK TOSHIBA

Plasma synthesis of metal oxide nanoparticles

A process for minimizing and even eliminating over-sized particles in a vapor phase synthesis of metal oxide-containing particles comprising reacting oxygen with one of more vapor streams comprising a titanium halide, a silicon halide and a compound selected from the group consisting of phosphorous, germanium, boron, tin, niobium, chromium, silver, gold, palladium aluminum, and mixtures thereof in a plug flow, plasma reactor.
Owner:EI DU PONT DE NEMOURS & CO

Method for synthesis of colloidal nanoparticles

InactiveUS20060060998A1Large-scale, safe, convenient, reproducible, and energy-efficient productionHigh crystallinityDielectric heatingNanoinformaticsColloidal nanoparticlesContinuous flow
A method for synthesis of high quality colloidal nanoparticles using comprises a high heating rate process. Irradiation of single mode, high power, microwave is a particularly well suited technique to realize high quality semiconductor nanoparticles. The use of microwave radiation effectively automates the synthesis, and more importantly, permits the use of a continuous flow microwave reactor for commercial preparation of the high quality colloidal nanoparticles.
Owner:RGT UNIV OF CALIFORNIA

Positive electrode active material, positive electrode, battery, battery pack, electronic device, electric vehicle, power storage device, and power system

A positive electrode active material includes: a particle including a lithium composite oxide; a first layer that is provided on a surface of the particle and includes a lithium composite oxide; and a second layer that is provided on a surface of the first layer. The lithium composite oxide included in the particle and the lithium composite oxide included in the first layer have the same composition or almost the same composition, the second layer includes an oxide or a fluoride, and the lithium composite oxide included in the first layer has lower crystallinity than the lithium composite oxide included in the particle.
Owner:MURATA MFG CO LTD

Sodium ion secondary battery, active substance, positive electrode and negative electrode used by sodium ion secondary battery, and preparation method of active substance

The invention discloses a sodium ion secondary battery, an active substance, a positive electrode and a negative electrode used by the sodium ion secondary battery, and a preparation method of the active substance. The space group of the active substance is Pbam, and the chemical general formula of the active substance is Nax[Mn(x-y)Ay]Ti1-xO2-delta, wherein A is one of Al, Fe, Ni, Cu, Zn, Co, Mo, V and Cr, x is more than 0.2 and less than 0.8, y is not less than 0 and not more than 0.1, and delta is not less than 0 and not more than 0.05. The active substance of the sodium ion secondary battery can be used as a positive electrode material and can be further used as a negative electrode material; when the active substance is used as the positive electrode, the sodium storage voltage is between 2.6-3.6V, and the average voltage is 3.0V; when the active substance is used as the negative electrode, the sodium storage voltage is between 1.5-2.6V, and the average voltage is 2.0V; the average working voltage of a total battery constructed by using the active substance as the positive electrode and the negative electrode is 0.8V.
Owner:BEIJING HINA BATTERY TECH CO LTD

Catalyst and method for converting low molecular weight paraffinic hydrocarbons into alkenes

A process and catalyst for the partial oxidation of low molecular weight paraffinic hydrocarbons, such as methane, ethane, propane, naphtha, and natural gas condensates to form alkenes, such as ethylene, propylene and other valuable by-products. The process involves contacting the low molecular weight paraffinic hydrocarbon with the catalyst in the presence of oxygen or air and optionally steam. The catalyst has a perovskite-type crystalline structure, and lends itself to fixed and fluidized bed reactor configurations. The conversion process is less costly than conventional processes due to low pressure operation, the use of air and steam as a source of oxygen, and lower operating temperatures resulting in less coking, downtime, and reduced cost for materials of construction. Catalyst activity is extended and reactor downtime for catalyst regeneration is minimized by addition of chlorides and / or amines.
Owner:HRD CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products