Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

739 results about "Metal oxide nanoparticles" patented technology

Carbon materials metal/metal oxide nanoparticle composite and battery anode composed of the same

A method of forming a composite material for use as an anode for a lithium-ion battery is disclosed. The steps include selecting a carbon material as a constituent part of the composite, chemically treating the selected carbon material to receive nanoparticles, incorporating nanoparticles into the chemically treated carbon material and removing surface nanoparticles from an outside surface of the carbon material with incorporated nanoparticles. A material making up the nanoparticles alloys with lithium.
Owner:NASA

Curable high refractive index compositions

The invention provides an organic / inorganic hybrid material with a high refractive index at telecommunications wavelengths. Energy curable compositions of the present invention include condensed metal oxide nanoparticles, a high refractive index organometallic coupling agent, an energy curable organometallic coupling agent, and a high refractive index monomer or oligomer. Polymeric materials of the present invention include condensed metal oxide nanoparticles having a mixture of organometallic coupling agents covalently bound to the exterior surface of the nanoparticles and a high refractive index solid polymer matrix, wherein the mixture of organometallic coupling agents includes a high refractive index coupling agent, and a coupling agent covalently bound to the polymer matrix. The materials of the present invention are useful in making optical devices for telecommunications applications.
Owner:CORNING INC

Carbon nanoparticle-containing hydrophilic nanofluid with enhanced thermal conductivity

The present invention relates to a nanofluid that contains carbon nanoparticles, metal oxide nanoparticles and a surfactant in a thermal transfer fluid. The present invention also relates to processes for producing such a nanofluid with enhanced thermal conductive properties.
Owner:SOUTH DAKOTA SCHOOL OF MINES AND TECHNOLOGY

Biocompatible fluorescent metal oxide nanoparticles

The invention relates to highly fluorescent metal oxide nanoparticles to which biomolecules and other compounds can be chemically linked to form biocompatible, stable optical imaging agents for in vitro and in vivo applications. The fluorescent metal oxide nanoparticles may also be used for magnetic resonance imaging (MRI), thus providing a multi modality imaging agent.
Owner:VISEN MEDICAL INC

Process of making hydrophobic metal oxide nanoparticles

A process of treating metal oxide nanoparticles that includes mixing metal oxide nanoparticles, a solvent, and a surface treatment agent that is preferably a silane or siloxane is described. The treated metal oxide nanoparticles are rendered hydrophobic by the surface treatment agent being surface attached thereto, and are preferably dispersed in a hydrophobic aromatic polymer binder of a charge transport layer of a photoreceptor, whereby π—π interactions can be formed between the organic moieties on the surface of the nanoparticles and the aromatic components of the binder polymer to achieve a stable dispersion of the nanoparticles in the polymer that is substantially free of large sized agglomerations.
Owner:XEROX CORP

Transparent polymer nanocomposites containing nanoparticles and method of making same

The present invention relates to transparent nanocomposites comprising of metal oxide nanoparticles dispersed in polymer matrix. The nanoparticles have capping agents attached onto the nanoparticle surfaces and a precursor solution of capped nanoparticles and polymer is prepared and dried to obtain the nanocomposites. The nanocomposites exhibit UV absorption, low haze, and improved thermal stability. The present invention also relates to the methods associated with the preparation of capped nanoparticles, precursor solution and nanocomposites.
Owner:KANEKA CORP

Light-emitting element and method of producing the same

A light-emitting element comprising a transparent electrode, a light-emitting layer, and a back electrode, on a substrate, wherein the light-emitting layer comprises photoluminescent metal oxide nanoparticles having an average particle size of 1 to 50 nm; and a method of producing the same.
Owner:FUJIFILM CORP

Carbon-coated metal oxide nanoparticles

Composites for destroying chemical and biological agents such as toxins and bacteria, and methods of preparing and using those composites are provided. According to the invention, the substance to be destroyed is contacted with the inventive composites which comprise finely divided metal oxide nanoparticles at least partially coated with carbon. Advantageously, the composites exclude water while not excluding the target compound or adsorbates. The desired metal oxide nanoparticles can be pressed into pellets for use when a powder is not feasible. Preferred metal oxide nanoparticles include MgO, SrO, BaO, CaO, TiO2, ZrO2, FeO, V2O3, V2O5, Mn2O3, Fe2O3, NiO, CuO, Al2O3, SiO2, ZnO, Ag2O, and mixtures thereof.
Owner:KANSAS STATE UNIV RES FOUND

Sunlight controlled transparent film in low radiation, prepartion method and application

InactiveCN1916057AGood visible light transparencyPrevent penetrationDispersed mediaMetal oxide nanoparticles
This invention relates to a method for preparing low-radiation heat-insulating transparent film for controlling sunlight. The film is composed of: organic polymer 70-99.9 wt. %, doping metal oxide nanoparticles 0.1-30 wt. % and adjuvant 0-29.9 wt. %. The method comprises: (1) uniformly dispersing the doping metal oxide nanoparticles into a dispersing medium, mixing with the organic polymer and the adjuvant, and drying to obtain master batches; (2) plasticizing, smelting or extruding and blowing, calendaring, stretching, extruding and casting to obtain the film. The film can be used as the coating film for architecture glass, automobile window and ship window, and has such advantages as high visible-light permeability, good sunlight obstructing effect, good anti-electrostatic effect, and good electromagnetic radiation resistance.
Owner:长春迪高实业有限公司

Nanoparticles for Protection of Cells from Oxidative Stress

The present invention concerns metal oxide semiconductor nanoparticles with free radical scavenging activity, compositions comprising such nanoparticles, methods for their use, and methods for their production. In one aspect, the invention concerns a method for enhancing the survival or viability of transplanted cells, comprising administering an effective amount of metal oxide semiconductor nanoparticles to a target anatomical site of a subject before, during, or after administration of transplant cells to the subject. Preferably, the metal oxide nanoparticle is a cerium oxide (ceria) nanoparticle.
Owner:UNIV OF FLORIDA RES FOUNDATION INC

Nanoparticle-doped porous bead and fabrication method thereof

Disclosed are a nanoparticle-doped porous bead with a highly enhanced photoluminescence without wavelength shift and improved durability, and a fabrication method thereof, the nanoparticle-doped porous bead comprising porous beads, and nanoparticles radially bonded onto homocentric spheres of the porous beads by an electrostatic attractive force, the homocentric sphere located inside the porous bead near a surface thereof, wherein the nanoparticles are photoluminescent nanoparticles or mixed nanoparticles of photoluminescent nanoparticles and another nanoparticles, wherein the another nanoparticle is one or more than two mixed, selected from a group consisting of magnetic nanoparticle, metallic nanoparticle and metal oxide nanoparticle.
Owner:KOREA INST OF SCI & TECH

Water-soluble magnetic or metal oxide nanoparticles coated with ligands, preparation method and usage thereof

This invention provides water-soluble magnetic or water-soluble metal oxide nanoparticles, which are coated with phase transfer ligands having an adhesive region, an adhesive region-crosslinking region, or an adhesive region-reactive region, and also provides a method of preparing water-soluble magnetic or metal oxide nanoparticles, the method including (1) synthesizing water-insoluble magnetic or metal oxide nanoparticles in an organic solvent; (2) dissolving the water-insoluble magnetic or metal oxide nanoparticles in a first solvent and dissolving a phase transfer ligand in a second solvent; and (3) mixing the two solutions achieved in step (2) to thus exchange the surface of the water-insoluble magnetic or metal oxide nanoparticles with the phase transfer ligand. Further, the water-soluble magnetic and water-soluble metal oxide nanoparticles coated with the phase transfer ligand can be used in various fields, including the separation and detection of materials, the diagnosis and treatment of diseases, and the decomposition of microorganisms and contaminants.
Owner:IND ACADEMIC CORP FOUND YONSEI UNIV

Graphene-based ternary composite film gas sensor and preparation method thereof

The invention discloses a graphene-based ternary composite film gas sensor and a preparation method thereof. The graphene-based ternary composite film gas sensor consists of a ternary composite film and a substrate, wherein the ternary composite film is formed by compounding graphene, metal or metal oxide nanoparticles and conducting polymers. The high specific surface area and excellent electric and physicochemical characteristics of the graphene and the nanoparticles and the specific gas-sensitive response characteristic of the conducting polymers are fully utilized, a gain complementary mechanism is formed between different materials due to ternary compounding, and the gas-sensitive characteristic and stability of the system are enhanced. Meanwhile, the preparation method is combined with a self-assembling process with high ordering property and can be used for preparing the high-sensitivity room temperature detection gas sensor.
Owner:UNIV OF ELECTRONICS SCI & TECH OF CHINA

Highly-transparent ultraviolet-resistant energy-saving film and preparation method thereof

The invention relates to a highly-transparent ultraviolet-resistant energy-saving film and a preparation method thereof, belonging to the field of composite films synthesized by compounding polymer and inorganic nano-particles and aiming at overcoming the defects that the prior film has low visible light transmission and high production cost. The highly-transparent ultraviolet-resistant energy-saving film comprises the following components by the weight percent: 50-99.8 of organic polymer, 0.2-50 of metal-oxide nano-particles and 0-39.9 of polymer auxiliary agent. The highly-transparent ultraviolet-resistant energy-saving film is prepared by a solution mixing method or a solution-melting mixing method; with the solution mixing method, the organic polymer and the metal-oxide nano-particles are dispersed in dispersing medium to prepare film preparing stock solution, and the film preparing stock solution is used for preparing the energy-saving film on a substrate; with the solution-melting mixing method, the mixture of the organic polymer and the metal-oxide nano-particles is dried to prepare master batch, and the master bath is mixed with the organic polymer and the polymer auxiliary agent to prepare the energy-saving film. The highly-transparent ultraviolet-resistant energy-saving film has high visible light transmission, good ultraviolet resistance and energy-saving effect, simple preparation process and low cost, thereby being suitable for industrial production.
Owner:BEIJING UNIV OF CHEM TECH +1

Metal and metal oxide nanoparticle-embedded composites

Metal / metal oxide nanoparticle-embedded polymer films were synthesized in situ wherein the polymerizing agent was utilized for both reduction and polymerization (such as curing). This in situ method avoids the use of any external reducing agent / stabilizing agent and leads to a uniform distribution of nanoparticles in the polymer matrix. In some embodiments, additional heating can be utilized to form the nanoparticles embedded in the polymer film.
Owner:RICE UNIV

Composite photocatalysts, method for making the same and application thereof

A composite photocatalyst is provided. The composite photocatalyst includes a nanomotor and a plurality of cocatalysts, the nanomotor comprises a shell formed by porous material, at least one inner core formed by a photocatalyst, and a cavity between the shell and the at least one inner core, the plurality of cocatalysts are located in the cavity. The plurality of cocatalysts are selected from the group consisting of metal nanoparticles, metal oxide nanoparticles, metal sulfide nanoparticles, phosphate nanoparticles, up-conversion material nanoparticles, and any combination thereof. A method for making the composite photocatalyst and application thereof are further provided. The plurality of cocatalysts and the nanomotor forms a photocatalytic synergistic reaction system, improving photo-catalytic activity of the composite photocatalyst.
Owner:HANGZHOU TONG KING ENVIRONMENT TECH CO LTD

Metal oxide paste composition and method of manufacturing semiconductor electrode using the same

Disclosed herein are a metal oxide paste composition comprising a carboxylic ester dispersant and / or a phosphate dispersant, and a method for manufacturing a semiconductor electrode for solar cells using the same. The disclosed metal oxide paste composition improves the dispersibility of metal oxide nanoparticles. Thus, if it is used to manufacture a semiconductor electrode for solar cells, it will allow the increased adsorption of a dye, thus improving the photoelectric efficiency of the resulting solar cell.
Owner:SAMSUNG SDI CO LTD

High-transparency ultraviolet-blocking energy-saving film and solution-fusion preparation method thereof

The invention discloses a high-transparency ultraviolet-blocking energy-saving film and a solution-fusion preparation method thereof, which belong to the field of composite films. The film comprises the following components: 50 to 99.8 weight percent of thermoplastic polymer, 0.2 to 50 weight percent of metallic oxide nanoparticles (which at least comprise one kind of composite metallic oxide nanoparticles with a core-shell structure) and 0 to 39.9 weight percent of plastic assistant. The film is prepared by a solution-fusion mixing process which comprises the following steps of: transferring the metallic oxide nanoparticles from an initial disperse system to a solvent system capable of dissolving the thermoplastic polymer to prepare metallic oxide nanoparticle / thermoplastic polymer / solvent dispersion; and drying the obtained dispersion by atomization to obtain a dry powdered master batch and preparing the energy-saving film from the master batch, the thermoplastic polymer and the assistant by using the fusion mixing process. The film in the invention has high transparency, high ultraviolet light shielding performance and good energy-saving effects and is simple in preparation process, low in cost and suitable for industrial production.
Owner:BEIJING UNIV OF CHEM TECH

Transparent quantum dot light-emitting diodes with dielectric/metal/dielectric electrode

Quantum dot light emitting diodes (QD-LEDs) are formed that are transparent and emit light from the top and bottom faces. At least one electrode of the QD-LEDs is a dielectric / metal / dielectric layered structure, where the first dielectric comprises metal oxide nanoparticles or polymer-nanoparticle blends and is 10 to 40 nm in thickness, the metal layer is 5 to 25 nm in thickness, and the second dielectric layer is a nanoparticulate, polymer-nanoparticle blend or continuous layer of 30 to 200 nm in thickness and is situated distal to the light emitting layer of the QD-LED.
Owner:UNIV OF FLORIDA RES FOUNDATION INC

Methods for preparing metal and metal oxide nanoparticles

Metal and metal oxide nanoparticles can be prepared via a simple synthesis by using a hydrolysable gallotannin, such as tannic acid, to reduce a metal precursor compound and to act as a stabilizer for the resultant nanoparticles. By controlling the molar ratio of hydrolysable gallotannin to metal precursor and / or the initial pH of the reagents one can achieve control over the size and polydispersity of the resultant nanoparticles. In particular, the controlled addition of a metal precursor into a solution of the hydrolysable gallotannin, as described herein, can yield small nanoparticles, for example 1 nm to 40 nm diameter nanoparticles, with low polydispersity. The methods disclosed herein can be performed at room temperature.
Owner:INDIAN INSTITUTE OF SCIENCE

Preparation method and application of carbon-coated grapheme-based metal oxide composite

The invention discloses a preparation method and application of a carbon-coated grapheme-based metal oxide composite in a two-dimensional core-shell structure. The carbon-coated grapheme-based metal oxide composite in the two-dimensional core-shell structure is prepared by taking the two-dimensional grapheme in a single-layer carbon atom structure as a carrier and the phenolic resin or polysaccharide as the carbon source precursor. The metal oxide nanoparticles obtained by the method are uniformly loaded on a graphene sheet and well coated in the carbon-coated layer. The preparation method has the advantages of simple process, mild condition and low cost. The Electrochemical tests prove that the carbon-coated grapheme-based metal oxide composite in the two-dimensional core-shell structure has excellent cycle stability and rate properties. The experiments prove that: under the charge and discharge current of 200mAhg<-1>, the tin dioxide material has the discharge capacity of 200mAhg<-1>, and the ferroferric oxide material has the discharge capacity of 930mAhg<-1>. Therefore, better experimental data and theoretical support are provided for the research and the application of the metal oxide in the field of electrochemistry.
Owner:SHANGHAI JIAO TONG UNIV

Plasma synthesis of metal oxide nanoparticles

A process for minimizing and even eliminating over-sized particles in a vapor phase synthesis of metal oxide-containing particles comprising reacting oxygen with one of more vapor streams comprising a titanium halide, a silicon halide and a compound selected from the group consisting of phosphorous, germanium, boron, tin, niobium, chromium, silver, gold, palladium aluminum, and mixtures thereof in a plug flow, plasma reactor.
Owner:EI DU PONT DE NEMOURS & CO

Oxidized graphene metal/metallic oxide nanoparticle modified hollow fiber ultrafiltration membrane, and preparation method thereof

InactiveCN105233706AGood mechanical propertiesSolve the problem of easy agglomeration in the casting solutionUltrafiltrationHollow fibreFiber
The invention discloses an oxidized graphene metal / metallic oxide nanoparticle modified hollow fiber ultrafiltration membrane, and a preparation method thereof. According to the preparation method, anchoring of metal / metallic oxide nanoparticles on oxidized graphene is carried out; an obtained oxidized graphene dispersion liquid loaded with the metal / metallic oxide nanoparticles is added into a membrane material, and a membrane casting solution is obtained via mixing; the membrane casting solution is subjected to weaving so as to obtain the oxidized graphene metal / metallic oxide nanoparticle doped hollow fiber ultrafiltration membrane. Mechanical strength, water flux, retention rate, hydrophilic performance, pollution resistance, and service life of the hollow fiber ultrafiltration membrane are improved obviously; the preparation method is simple; operation is convenient; and repeatability is high.
Owner:SANDA FILM SCI & TECH XIAMEN

Metal oxide nanoparticle filled polymers

The present invention includes a method, composition and apparatus for forming a nanoparticle filled polymer having similar gas selectivity and greater gas permeability than the native polymer. The nanoparticle filled polymer includes one or more polymeric materials and one or more nanoparticles dispersed within the one or more polymeric materials that increasing the permeability of the nanoparticle filled polymers relative to the permeability of the native polymer membrane.
Owner:BOARD OF RGT THE UNIV OF TEXAS SYST

Chemical sensor

Provided is a chemical sensor for detecting a gaseous chemical species including a sensing layer made of a crystalline metal oxide nanoparticle aggregate having an aspect ratio of not less than about 5, and a short side length of not more than about 2 nm, whereby it is possible to detect the chemical species even at a room temperature since electrical conductivity is varied depending on adsorption and desorption of the chemical species due to a large surface area of the crystalline metal oxide nanoparticle and an active adsorption site located at a surface thereof.
Owner:ELECTRONICS & TELECOMM RES INST

Composite graphene-based material

The present invention provides composite material having a porous graphene-based foam matrix and comprising porous inorganic micro-particles and metal oxide nano-particles distributed throughout the foam matrix.
Owner:ADELAIDE RES & INNOVATION PTY LTD

Ternary nitric acid nano-molten salt heat transfer and storage medium, preparation method and application thereof

Belonging to the technical field of heat storage and transfer, the invention provides a ternary nitric acid nano-molten salt heat transfer and storage medium, a preparation method and application thereof. The ternary nitric acid nano-molten salt heat transfer and storage medium contains a ternary nitric acid molten salt system formed by potassium nitrate, sodium nitrate and sodium nitrite. The ternary nitric acid nano-molten salt heat transfer and storage medium is characterized in that it also includes metal oxide nanoparticles and / or non-metal oxide nanoparticles. The nanoparticles are dispersed into the ternary nitric acid molten salt system to undergo compounding so as to form the ternary nitric acid nano-molten salt heat transfer and storage medium. The ternary nitric acid nano-molten salt involved in the invention has a low melting point, an upper limit use temperature up to 600DEG C, good thermal stability, and high heat conductivity, thus being very suitable for the heat storage and transfer system of industrial energy storage and solar-thermal power generation.
Owner:QINGHAI ENESOON NEW MATERIAL TECH & SCI CO LTD

Preparation method of metal or metal oxide particle-containing CeO2 fiber catalyst

The invention discloses a preparation method of a metal or metal oxide particle-containing CeO2 fiber catalyst, and belongs to the field of preparation of nanocatalysts. The novel fiber-based supported catalyst is obtained by adopting a cocatalyst CeO2 fiber as a supporter to support a main catalyst metal or metal oxide nanoparticle. The method comprises the following steps: 1, respectively dissolving a CeO2 precusor, a polymer and a metal or metal salt in a solvent, magnetically stirring, and mixing and stirring to obtain a spinning precursor solution; 2, carrying out an electrostatic spinning technology to make metal or metal CeO2 / polymer supported composite precursor fibers; and 3, carrying out high temperature calcining and hydrogen reduction to obtain the metal or metal oxide nanoparticle / CeO2 fiber supported catalyst. The method is simple and easy, and the metal or metal oxide particle has good dispersibility and large specific surface area; and the catalyst high the characteristics of high catalysis activity and easy recovery, and has wide application prospect in the future catalysis industry.
Owner:BEIJING UNIV OF CHEM TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products