Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

397 results about "Nanogel" patented technology

A nanogel is a nanoparticle composed of a hydrogel—a crosslinked hydrophilic polymer network. Nanogels are most often composed of synthetic polymers or biopolymers which are chemically or physically crosslinked. Nanogels are usually in the tens to hundreds of nanometers in diameter. Like hydrogels, the pores in nanogels can be filled with small molecules or macromolecules, and their properties, such as swelling, degradation, and chemical functionality, can be controlled.

Compound reverse osmosis membrane with interpenetrating network desalting layer and preparation method of membrane

The invention discloses a compound reverse osmosis membrane with interpenetrating network desalting layer and a preparation method of the membrane. The desalting layer consists of a stereoscopic network which is formed by interpenetrating macromolecule nanogel and polyamide. The preparation method comprises the following steps of: pre-adding hydrophilic and / or oleophylic macromolecule nanogel with good dispersion into a solvent of solution A and / or B, preparing a water phase A solution containing m-phenylenediamine and / or p-phenylenediamine, preparing an organic phase B solution containing trimesoyl chloride, enabling the solution A and the solution B to fully contact on a porous support carrier for interface reaction, rinsing by using deionized water, carrying out moisturizing treatment by using glycerol, and drying. The compound reverse osmosis membrane disclosed by the invention has a sodium chloride removal rate of not less than 99% and a flux of not less than 25GFD (Geophysical Fluid Dynamics) under a pressure of 225psi; the microstructure and the charge property of the desalting layer can be regulated and controlled through the macromolecule nanogel so that the reverse osmosis membrane with high anti-pollution capability is prepared; and the compound reverse osmosis membrane can further be used for developing novel low-pollution reverse osmosis membranes.
Owner:VONTRON TECH CO LTD

PH-sensitive reduction responsive nanogel and preparation method thereof

The invention relates to a pH-sensitive reduction responsive nanogel, which comprises a disulfide-bond-crosslinked sodium alginate derivate serving as an active ingredient. A preparation method of the nanogel comprises the following steps of: adding periodate into a sodium alginate aqueous solution according to molar ratio of the glycosyl unit of the sodium alginate aqueous solution to the periodate as 1:(0.01-10), and reacting away from light to obtain dialdehyde sodium alginate; stirring and uniformly mixing a dialdehyde sodium alginate aqueous solution and a 4-aminothiolphenol ethanol solution according to the molar ratio of the aldehyde group of the dialdehyde sodium alginate to the amino group of the 4-aminothiolphenol as 1:(0.01-10) away from light at the temperature of 0-25 DEG C, and then adding sodium borohydride to obtain sulphydryl sodium alginate; and self-assembling the sulphydryl sodium alginate in an aqueous solution and oxidizing the sulphydryl sodium alginate by oxygen in the solution to obtain the nanogel. The nanogel prepared by the invention has stability, pH sensitivity and reduction responsiveness and has a potential application value in the fields of biomedical implants, biological nanotechnology, drug delivery system and the like.
Owner:WUHAN UNIV OF TECH

Lipobeads and their production

Lipobeads (liposome-encapsulated hydrogels) combine properties of hydrogels and liposomes to create systems that are sensitive to environmental conditions and respond to changes in those conditions in a fast time scale. Lipobeads may be produced by polymerizing anchored or unanchored hydrogels within liposomes or by mixing anchored or unanchored hydrogels with liposomes. Giant lipobeads may be produced by shrinking unanchored nanogels in lipobeads and fusing the resulting lipobead aggregates, long-term aging of anchored or unanchored lipobeads, or mixing anchored or unanchored aggregated nanogels with liposomes. Poly(acrylamide), poly(N-isopropylacrylamide), and poly(N-isopropylacrylamide-co-1-vinylimidazole) lipobeads were produced and characterized.
Owner:POLYTECHNIC INSTITUTE OF NEW YORK UNIVERSITY

Novel method for preparation of chitosan nano carrier and functionalization thereof

The invention discloses a novel method for preparation of a chitosan nano carrier and functionalization thereof, which relates to the chitosan nano carrier. The invention provides a novel method for preparation of the chitosan nano carrier and functionalization thereof. The chitosan is dissolved in acetic acid solution, meanwhile, pH is adjusted to 4.5-5.5 with NaOH solution, STPP (sodium tripolyphosphate) solution is added to the chitosan solution to obtain nanogels, then, crosslinking glutaraldehyde is provided for the chitosan, centrifugation is conducted after ending of reaction, reduction reaction is conducted with excess sodium borohydride, then centrifugation is conducted again, then, the obtained compound is dispersed in hydrochloric acid solution to remove the unreacted sodium borohydride, then dialysis is conducted, in order to wash STPP to obtain nanoparticles; the folic acid is weighed to be dissolved in the phosphate buffer solution, then the solution is added to chitosan nanoparticles water solution, after adding EDCI to the solution, folic acid modified nanoparticles are obtained through reaction; PEG succinimidyl propionate is weighed to be dissolved in the phosphate buffer solution, then is added to the chitosan nanoparticles water solution, after reaction, PEG modified nanoparticles are obtained.
Owner:XIAMEN UNIV

Preparation method of ferric oxide nanoparticle supported sodium alginate nanogel

The invention relates to a preparation method of ferric oxide nanoparticle supported sodium alginate nanogel. The preparation method comprises steps as follows: (1), PEI (polyethylenimine) coated Fe3O4 nano-particles (Fe3O4-PEI) are synthesized with a hydrothermal method; (2), an aqueous solution of sodium alginate is firstly activated by EDC (carbodiimide) and has a double emulsion reaction to form a W / O / W polymer emulsion; (3), Fe3O4-PEI in the step (1) is taken as a crosslinking agent and added into the polymer emulsion in the step (2) to have a crosslinking reaction, and the ferric oxide nanoparticle supported sodium alginate nanogel is obtained after an organic solvent and a surface active agent are removed. The method is very simple, and operation and separation are easy; meanwhile, sources of raw materials are extensive; the prepared sodium alginate nanogel has a smaller grain diameter, is uniformly distributed, high in relaxation rate and low in cost, has a remarkable radiography effect, simultaneously has excellent water solubility, gel stability, biocompatibility and blood compatibility, doesn't have a harmful effect on a living body, and has potential application value in the magnetic resonance imaging diagnosis field.
Owner:DONGHUA UNIV

Ringing nanogel compositions

The present invention relates to a method of making a ringing nanogel with low levels of emulsifiers. The oil-in-water nanogel is thickened by an oil phase and a silicone component that self-structure to increase the complex viscosity of the composition and form the nanogel. The pre-emulsion, containing the silicone component, the oil phase and a water phase, is subjected to a high shear and high pressure treatment at least two consecutive times. The self-thickening of the gel occurs when the silicone component and the oil phase provide structure to the composition. Alternatively, the silicone component can be added to a pre-emulsion of the oil and water phases after the two phases are subjected to high shear and high pressure treatment. The combination of the silicone component with the treated intermediary emulsion is subjected to a second high shear and high pressure treatment which results in self-structuring of the silicone component and the oil phase. The resulting ringing nanogel has a difference in complex viscosity of at least about 10,000 poise under oscillation stress in the range of about 0 to 5,000 (dyne / cm2), and has an initial complex viscosity greater than about 15,000 poise.
Owner:COLOR ACCESS

Nanogel and nanogel drug carrier system both with smart response to tumor microenvironment

ActiveCN106810636AHas pHHas GSH dual responsivenessOrganic active ingredientsAerosol deliveryLysosomePh regulation
The invention provides a nanogel with hydrophilic and hydrophobic reversal, charge reversal and intracellular redox responsiveness on the basis of pH regulation. The nanogel is prepared by cross-linking of thermo-sensitive monomer with controllable radical polymerization, amphoteric ionic monomer and amido-containing pH sensitive monomer through a disulfide-bond-containing cross-linking agent. The invention further provides a nanogel drug carrier system with smart response to tumor microenvironment and its preparation method. On the condition of blood pH 7.4, the nanogel is in a hydrophilic swelling state that is favorable for avoiding being phagocytosed by the reticuloendothelial system (RES) and accordingly, the nanogel has blood long circulation capacity; on the condition of tumor tissue subacidity, the state of the nanogel is reversed into a hydrophobic shrinking state that is favorable for the nanogel to realize effective concentration, depth penetration and be absorbed effectively by tumor cells on the tumor location. Besides, in the intracellular lysosome environment, negative charge of the nanogel is reversed into positive charge, which is favorable for the nanogel to escape from the lysosome; and then the nanogel releases drugs responsively in cytoplasm high-GSH environment, thereby achieving a good tumor inhibition effect.
Owner:HUAZHONG UNIV OF SCI & TECH

Preparation method of hyaluronic acid nanogel

The invention discloses a preparation method of hyaluronic acid nanogel. The target product hyaluronic acid nanogel is synthesized from chitosan quaternary ammonium salt and sodium hyaluronate through an ion crosslinking and polymer coacervation two-step technology, the average particle size of the product is 150-230nm, and the Zeta potential of the product is -28.6 ~ -36.7mV. The hyaluronic acid nanogel prepared in the invention can be used for treating oral ulcer, can maintain the effective active concentration of a basic fibroblast growth factor in the oral ulcer position for a long time, and improves the clinic treatment effect.
Owner:QINGDAO CENT HOSPITAL

Aqueous polyurethane-polyurea dispersion and aqueous base paint containing said dispersion

The present invention relates to an aqueous polyurethane-polyurea dispersion (PD) having polyurethane-polyurea particles, present in the dispersion, having an average particle size of 40 to 2000 nm, and having a gel fraction of at least 50%, the polyurethane-polyurea particles comprising, in each case in reacted form,(Z.1.1) at least one polyurethane prepolymer containing isocyanate groups and comprising anionic groups and / or groups which can be converted into anionic groups, and(Z.1.2) at least one polyamine comprising two primary amino groups and one or two secondary amino groups, and the dispersion (PD) consisting to an extent of at least 90 wt % of the polyurethane-polyurea particles and water.The present invention also relates to basecoat materials comprising the dispersion (PD), and to multicoat paint systems produced using the basecoat materials.
Owner:BASF COATINGS GMBH

Ultrasonic preparation method of casein-polysaccharide nanogel and application of functional food

The invention discloses an ultrasonic preparation method of casein-polysaccharide nanogel and application of functional food, and relates to the technical field of functional food microcapsules. The casein-polysaccharide nanogel is prepared from the following raw materials in parts by weight: 2-40 parts of sodium caseinate and 2.5-25 parts of sodium alginate. The sodium alginate is added in the sodium caseinate, the advanced structure of the sodium caseinate is changed, the structure of the sodium caseinate is opened to expose an active group, meanwhile, protein and polysaccharides form small aggregates, and therefore, the various aggregates are promoted to form gel under the hydrophobic interaction so as to lay a foundation for embedding of bioactive components. In a process of embedding beta-carotene by using sodium caseinate-sodium alginate composite gel, the protein and the polysaccharides are promoted to be crosslinked to obtain the aggregates by a frequency sweeping ultrasonic treatment technology or a multi-mode ultrasonic technology through an ultrasonic physical force, the various aggregates are promoted to form gel through the hydrophobic interaction, and a foundation is laid for embedding of the bioactive components.
Owner:JIANGSU UNIV

Compound fertilizer synergist modified by oxidized graphene and preparation method of compound fertilizer synergist

The invention belongs to the field of crop fertilizer and particularly relates to compound fertilizer synergist modified by oxidized graphene and a preparation method of the compound fertilizer synergist. The compound fertilizer synergist is prepared from, by weight, 70-80 parts of forestry and agricultural residues, 10-20 parts of a modifying agent, 0.5-1 part of a catalyst, 1-5 parts of stabilizer, 5-10 parts of cyclodextrin and 0.3-0.5 part of the oxidized graphene. The preparation method includes the steps that plasma illumination is utilized to conduct bombardment on the surfaces of forestry and agricultural residues, hydroxide radicals, carbanyl groups, carboxyl and other functional groups containing oxygen are introduced into the surfaces of the forestry and agricultural residues, then polymerization with water-soluble polymer modifier occurs under the action of high-field-intensity ultrasound waves, stable nanometer gel particles of three-dimensional network structures are formed, after modification with the oxidized graphene and cyclodextrin is completed, high adsorption, complexing power and a water-retaining property are achieved, nutrient elements in soil can be subjected to complexing, losing of fertilizer nutrients is reduced, the water retention and fertilizer retention performance of soil is improved, and the utilization rate of compound fertilizer can be remarkably raised. The compound fertilizer synergist has the advantages of being environmentally friendly, free of pollution, capable of raising the utilization rate of fertilizer and improving soil environment and the like.
Owner:CHENDU NEW KELI CHEM SCI CO LTD

Device and method for preparing vesica with inner and outer water phase gradient difference

The invention belongs to the field of a pharmaceutical preparation and discloses a method and a device for rapidly preparing a vesica (including liposome) with inner and outer water phase gradient difference in a large scale, and an application thereof. According to the device and the method disclosed by the invention, a membrane separation mechanism, and an ion exchanging and adsorption mechanism are ingeniously combined; and when the property, the ion gradient type and the preparation scale of the vesica with the needed gradient are different, a membrane separation device and an ion exchanging device, which have the different performances, are combined. With the adoption of a membrane separation method, cations, anions, zwitter ions and / or charge macromolecular substances in a vesica mixed suspension hydrated medium are distributed into a dialysis medium; and an ion exchanging method is used for selectively exchanging or cleaning the cations, the anions, the zwitter ions and / or the charge macromolecular substances in the dialysis medium, so that the vesica can establish the greater inner and outer water phase gradient difference in shorter time. The method and the device can be applied to preparing liposome gel, magnetic liposome, and nano grain / nano gel.
Owner:SHENYANG PHARMA UNIVERSITY

Vesicles with inner and outer aqueous-phase gradient difference and preparation method and application thereof

The invention belongs to the field of pharmaceutical preparations and discloses vesicles with inner and outer aqueous-phase gradient difference. The vesicles are prepared by treating blank vesicles by adopting an ion exchange method or combining the ion exchange method and a dialysis method or an ultrafiltration method. The invention also provides a preparation method and application of the vesicles; and the preparation method comprises the following steps of: preparing the blank vesicles; treating the prepared blank vesicles by using an ion exchanger; and performing elution treatment so as to prepare the vesicles with inner and outer aqueous-phase gradient difference. The prepared vesicles can be mixed with medicinal solution to realize active medicament carrying so as to prepare the pharmaceutical preparations. The prepared preparations also can be subjected to ion exchange treatment or freeze-drying treatment. The provided vesicles have higher inner and outer aqueous-phase gradient difference, can realize ion gradient medicament carrying of the vesicles and achieve higher encapsulation rate; meanwhile, the preparation method is simple and is low in cost, and the vesicles can be better applied to preparing liposome gel, magnetic liposome and nanoparticles / nanogel.
Owner:SHENYANG PHARMA UNIVERSITY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products