Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

436 results about "Binary alloy" patented technology

An alloy is a mixture of a metal with one or more other elements. A binary alloy is made up of two elements. 1. A homogeneous 2 binary alloy is a solid solution: The primary element is a metal and is called the solvent 3. The secondary element is called the solute.

High electron mobility transistor piezoelectric structures

Piezoelectric semiconductor structures and methods for fabricating the same are described. In an embodiment, the piezoelectric semiconductor structure includes a support substrate, a channel layer arranged on one side of the support substrate, and a barrier layer formed on the channel layer. The barrier layer is made of alternating binary alloy layers of Type III-Type V semiconductor materials.
Owner:PICOGIGA INT

Thermal interface materials and manufacturing method thereof

The invention discloses thermal interface materials and a manufacturing method of the thermal interface materials. The interface materials are formed by means of heating and oxidization of metals such as gallium, indium, mercury, sodium, potassium, cesium or binary alloy and multicomponent alloy of the cesium. The manufacturing method comprises the following steps: selecting metals such as the gallium, the indium, the mercury, the sodium, the potassium, the cesium or the binary alloy and the multicomponent alloy of the cesium, and enabling the metals or the alloy to become liquid and enabling the liquid metals or the alloy to be placed in air or oxygen through heating. By means of placing the metals such as the gallium, the indium, the mercury, the sodium, the potassium, the cesium or the binary alloy and the multicomponent alloy of the cesium in the air and the oxygen to be oxidized to form the thermal interface materials, wettability between metal-based fluid and each interface can be greatly enhanced, thereby requirements of the thermal interface materials can be met. Due to the good thermal and wetting properties, the thermal interface materials can play significant roles in an aspect of electric chip thermal conductivity of the fields such as cryogenic engineering, boosters of computers, satellites and rockets and laser device.
Owner:TECHNICAL INST OF PHYSICS & CHEMISTRY - CHINESE ACAD OF SCI +1

Preparation method for reduced graphene oxide/Ni-Co ternary composite wave-absorbing material

The invention discloses a preparation method for a reduced graphene oxide / Ni-Co ternary composite wave-absorbing material. According to the preparation method, graphite oxide, Co salt and Ni salt are adopted as precursors, hydrazine hydrate is adopted as a reducing agent, and the reduced graphene oxide / Ni-Co ternary composite wave-absorbing material can be prepared in one step of a hydrothermal reaction. Ni-Co binary alloy nanometer particles obtained during the preparation are directly loaded onto reduced graphene oxide (RGO) through in-situ growth, stable in structure, and high in dispersity; the preparation method is efficient, low in cost and short in consumed time; the prepared reduced graphene oxide / Ni-Co ternary composite wave-absorbing material is relatively good in performance; waves at different wavebands can be effectively absorbed by adjusting the addition proportions of graphite oxide, Co salt and Ni salt, the dosage of the reducing agent and the thickness of the reduced graphene oxide / Ni-Co ternary composite wave-absorbing material.
Owner:NANJING UNIV OF SCI & TECH

Method for reducing contact resistance based on low-melting-point metal and oxide thereof

The invention relates to a method for reducing contact resistance based on low-melting-point metal and an oxide thereof. By coating the low-melting-point metal and the oxide thereof between electric terminals connected with machinery, the contact resistance between the mechanical electric terminals is reduced effectively. The invention further relates to a conductive paste composing of the low-melting-point metal and the oxide thereof. The oxide takes 0.05% to 50% of the total weight of the conductive paste. The low-melting-point metal is one type or a combination of any two types selected from sodium, potassium, lithium, rubidium, cesium, gallium, indium, mercury, lead bismuth alloy, gallium-base binary alloy, gallium-base complex alloy, indium-base alloy, bismuth-base alloy, mercury-base alloy and sodium-potassium alloy which are lower than 200 DEG C in melting point. With the compound of the low-melting-point metal and the oxide thereof as the conducting medium, the method for reducing contact resistance can effectively reduce the contact resistance between the electric terminals connected with the machinery, significantly reduce the contact resistance heat effect, improve transmission efficiency of electric energy and prolong the service life of the machinery. The method for reducing contact resistance based on the low-melting-point metal and the oxide thereof can be widely applied to the technical fields of electric power and energy.
Owner:郭瑞

Palladium-copper binary alloy nanometer material, preparation method thereof and application thereof of serving as catalyst for electrocatalytic reduction

The invention discloses a palladium-copper binary alloy nanometer material. The average particle size is in a range of 3-5 nanometers; and the particle size distribution is less than 10 nanometers. A preparation method of the palladium-copper binary alloy nanometer material comprises the following steps: chlorine palladium acid sodium solution and copper chloride solution are taken; activated carbons and high-purity water are added for fully and uniformly mixing; sodium borohydride solution is added for an ice-water bath reaction; and after the reaction is finished, the washing and the drying are performed to obtain the palladium-copper binary alloy nanometer material. The invention designs the palladium-copper binary alloy nanometer material; the palladium-copper binary alloy nanometer material can serve as a catalyst for electrocatalytic reduction; the catalyst can be used for efficiently converting CO2 to formic acid and natural gas (including methane, carbon monoxide, hydrogen and few such hydrocarbons as ethane and ethylene), so that the method is convenient, the cost is low, and the effect is obvious; and CO2 is converted to chemicals with high additional values, so that the important practical significance on environmental protection and resource utilization is obvious.
Owner:王荔

Preparation method of znsb-c composite and anode materials for secondary batteries containing the same composite

Provided are a method for preparing a zinc antimonide-carbon composite through a mechanical synthesis process of zinc (Zn), antimony (Sb) and carbon (C), and an anode material including the composite as an active material. The method for preparing a zinc antimonide-carbon composite allows simple and rapid preparation of the composite using mechanical properties of a binary alloy of zinc antimonide. In addition, when applying the anode material including the composite as an anode active material to a secondary battery, it is possible to provide excellent initial efficiency, to prevent the problem of a change in volume caused by formation of crude particles, and to realize excellent high-rate characteristics and charge / discharge characteristics.
Owner:SEOUL NAT UNIV R&DB FOUND

Electroplating methods and chemistries for deposition of copper-indium-gallium containing thin films

The present invention provides a method and precursor structure to form a solar cell absorber layer. The method includes electrodepositing a first layer including a film stack including at least a first film comprising copper, a second film comprising indium and a third film comprising gallium, wherein the first layer includes a first amount of copper, electrodepositing a second layer onto the first layer, the second layer including at least one of a second copper-indium-gallium-ternary alloy film, a copper-indium binary alloy film, a copper-gallium binary alloy film and a copper-selenium binary alloy film, wherein the second layer includes a second amount of copper, which is higher than the first amount of copper, and electrodepositing a third layer onto the second layer, the third layer including selenium; and reacting the precursor stack to form an absorber layer on the base.
Owner:SOLOPOWER
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products