Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

188 results about "Trimethylaluminium" patented technology

Trimethylaluminium is one of the simplest examples of an organoaluminium compound. Despite its name it has the formula Al₂(CH₃)₆ (abbreviated as Al₂Me₆ or TMA), as it exists as a dimer. This colorless liquid is an industrially important compound but must be handled with care due to its pyrophoricity; it evolves white smoke (aluminium oxides) when the vapor is released into the air.

Trimethylgallium, a method for producing the same and a gallium nitride thin film grown from the trimethylgallium

The present invention provides a trimethylgallium which has less than 0.1 ppm of a total organic silicon compound content; and a method for producing the trimethylgallium comprises hydrolyzing trimethylaluminum as a raw material, extracting organic silicon compound contained with a solvent, quantifying methyltriethylsilane by a Gas Chromatography-Mass Spectrometry, selecting a trimethylaluminum having less than 0.5 ppm of methyltriethylsilane content for the raw material, purifying by distillation, followed by reaction with gallium chloride and then distilling the reactant solution to obtain the trimethylgallium.
Owner:SUMITOMO CHEM CO LTD

Bulk ethylene oligomerization using a low concentration of chromium catalyst and three-part activator

This invention enables the “bulk” oligomerization of ethylene (i.e. the oligomerization of ethylene in the presence of the oligomer product) using a catalyst system comprising 1) a very low concentration of a chromium catalyst and 2) a three part activator. The chromium catalyst contains a diphosphine ligand, preferably a so called P—N—P ligand. The activator includes an aluminoxane, trimethyl aluminum, and triethyl aluminum.
Owner:NOVA CHEM (INT) SA

Tube type PERC single-sided solar cell, preparation method thereof and special equipment thereof

The invention discloses a tube type PERC single-sided solar cell, which comprises a main silver back gate, an all-aluminum back electric field, a back-side composite film, a P-type silicon, an N-type emitting electrode, a front-side passivation film and a positive silver electrode. The back-side composite film is composed of one or more selected from an aluminum oxide film, a silicon dioxide film, a silicon oxynitride film and a silicon nitride film and is deposited at the back of a silicon chip by adopting tube type PECVD equipment. The tube type PECVD equipment comprises four gas pipelines of silane, ammonia, trimethyl aluminum and laughing gas. The appliance of the tube type PECVD equipment, used for loading and unloading silicon chips, is a graphite boat. The depth of a sticking point groove of the graphite boat is 0. 5-1 mm. The invention also discloses a preparation method and special equipment of the tube type PERC single-sided solar cell. According to the invention, the photoelectric conversion efficiency is high. Meanwhile, the appearance yield and the EL yield are high. The problems of scratching, winding and plating can be solved.
Owner:GUANGDONG AIKO SOLAR ENERGY TECH +1

Method for preparing substrate material with multilayer composite protective film

The invention relates to a method for preparing a substrate material with a multilayer composite protective film, which comprises the following steps: putting the substrate material into a reaction chamber, and heating the substrate material until the temperature thereof is 100 to 500 DEG C; introducing trimethyl aluminum or Al (CH3) N (CH2) 5CH3 precursor into the reaction chamber within 0.2 to 0.5 seconds under the pressure of 0.1 to 10 Torr; introducing nitrogen or inert gas into the reaction chamber so as to remove the trimethyl aluminum or Al (CH3) N (CH2) 5CH3 residual gas which is not subjected to chemisorption by a substrate; under the pressure of 0.1 to 10 Torr, introducing ozone or vapor reactive gas into the reaction chamber within 0.2 to 0.5 seconds so as to deposit an alumina atom layer on the substrate, wherein the thickness of the alumina atom layer on the substrate is 2 to 100nm; and replacing the trimethyl aluminum or Al (CH3) N (CH2) 5CH3 precursor by using chlorosilane, hexachlorodisilane or tetraethyl orthosilicate as silicon source, then repeating the steps above, and covering a silicon dioxide layer on an alumina layer, wherein the thickness of the alumina layer is 2 to 100nm; and finally, obtaining the substrate material with a composite inorganic protective film in a Al2O3 / SiO2 double-layer structure, wherein the thickness of the substrate material is 5 to 120nm. The method can precisely control the thickness of the film, wherein the thickness of the film can directly and precisely be controlled within a range of 1 to 100nm, and the film has excellent oxidation resistance and gas permeation resistance, and can control the ratio of Al2O3 to SiO2.
Owner:SHANGHAI NAT ENG RES CENT FORNANOTECH

Gradient AlGaN layer preparation method and device prepared by same

The invention relates to the technical field of semiconductors, in particular to a gradient AlGaN layer preparation method and a device prepared by the same. When a gradient AlGaN layer is grown, flow of trimethylaluminum fed into a reaction chamber is gradually decreased, and flow of trimethylgallium is increased gradually. The function of the trimethylaluminum flow satisfies yTMAl=a-bx<m> or yTMAl=a(1-x)<m>+b, the function of the trimethylgallium flow satisfies yTMGa=cx<n>+d or yTMGa=c-d(1-x)<n>, x refers to normalization time of growing of the gradient AlGaN layer, and m and n are 1 asynchronously. By the aid of the different flow functions, change rates of TMAl and TMGa in different flows are changed, so that distribution of aluminum in the gradient AlGaN layer can be controlled effectively, further stress and crystalline quality of a GaN film growing on the gradient AlGaN layer are regulated and controlled, and a thick GaN film high in crystalline quality and free of crazing is grown.
Owner:SUN YAT SEN UNIV

Trimethylaluminium preparation method

A trimethylaluminium preparation method includes the steps of adding aluminium-magnesium alloy powder and ethers into a reactor under the protection of inert gas, dropwise adding alkyl halide under the stirring condition, keeping ether backflow in the dropwise alkyl halide adding process, continuing to keep the ether backflow for 4 hours to 5 hours after alkyl halide is dropwise added, regulating the temperature of the reactor to 45 DEG C to 100 DEG C, keeping the temperature for 1 hour to 4 hours, evaporating the ethers, regulating the temperature of the reactor to 45 DEG C to 70 DEG C, keeping the temperature, evaporating the coordination compound of trimethylaluminium and the ethers under the vacuum condition, moving the coordination compound of the trimethylaluminium and the ethers to a deolation kettle, adding tri-n-octylamine, conducting heating and backflow under the stirring condition, keeping for 2 hours to 3 hours, regulating the temperature of the deolation kettle to 85 DEG C to 89 DEG C again, keeping the temperature for 8 hours to 10 hours under the vacuum degree of 1 mmHg to 50 mmHg, evaporating the ethers, raising the temperature of the deolation kettle to 90 DEG C to 160 DEG C, keeping the temperature for 30 hours to 35 hours under the vacuum condition, and evaporating the trimethylaluminium.
Owner:HENAN CHENGMING PHOTOELECTRIC NEW MATERIAL CO LTD

Carried catalyzer for olefinic polymerization and preparation method

InactiveCN1498904ALarge orifice sizeStrong ion exchangeChemistryTransition metal
A carried metallocene catalyst or post-transition metal catalyst for the catalytic polymerization of ethylene and propylene contains Zr or Fe (0.05-1.00 wt. portions), aluminium alkylide chosen from trimethyl aluminium, triethyl aluminum and triisobutyl aluminum (1-50) and molecular sieve-like calcium silicon compound (100). Its preparing process is also disclosed. Its advantages are high catalytic activity and no adhesion to reactor.
Owner:INST OF CHEM CHINESE ACAD OF SCI

Separator for lithium ion battery and preparation method of separator

The invention discloses a separator for a lithium ion battery and belongs to the technical field of lithium ion batteries. The separator comprises a polymer microporous film substrate, wherein the surface of the substrate and the internal wall of a micropore duct of the substrate are coated with nano-oxide layers. The preparation method comprises the following steps: (1) performing oxidation treatment on the polymer microporous film with an acid solution, then washing the film successively with an alkali solution and deionized water and drying the film; (2) putting the film on an atomic layer deposition apparatus or a continuous atomic layer deposition device, then vacuumizing, heating to 50-100 DEG C and keeping for 1-30min; (3) introducing trimethylaluminum as a first precursor; (4) adding nitrogen or inert gas for purging; (5) introducing a second precursor; (6) adding nitrogen or inert gas for purging; (7) repeating steps (3)-(6); and (8) performing heat setting treatment. The separator disclosed by the invention is small in thickness and heat shrinkage, and is good in wetting property with electrolyte. The preparation process temperature is low, a formed coating is dense, and the thickness of the coating can be precisely controlled.
Owner:XINXIANG ZHONGKE SCI&TECH

Preparation method of surface acoustic wave filter in AlN/GAZO/self-supporting diamond film structure

The invention belongs to the field of piezoelectric thin-film materials, and particularly relates to a preparation method of a surface acoustic wave filter in an AlN / GAZO / self-supporting diamond film structure. The method comprises the following steps: cleaning a self-supporting diamond film used as a substrate, sending the self-supporting diamond film into a vapor deposition reaction chamber, introducing nitrogen gas, trimethyl aluminum, trimethyl gallium and diethyl zinc into the reaction chamber to deposit a GAZO film with the thickness of 80-120nm on the substrate, introducing trimethyl aluminum to deposit an AlN thin film with the thickness of 800nm on the substrate carrying the GAZO film, cooling the inside of the vapor deposition reaction chamber to room temperature, and opening the deposition chamber to obtain the surface acoustic wave filter in an AlN / GAZO / self-supporting diamond film structure. The method provided by the invention is simple, the technique is easy to control, and the prepared piezoelectric thin-film device has the advantages of favorable uniformity and excellent acoustic speed transmission performance and can be used for manufacturing high-power high-frequency surface acoustic wave filters.
Owner:SHENYANG INST OF ENG +1

Fluoride phosphor powder coating method based on atomic layer deposition technology

The invention relates to a fluoride phosphor powder coating method based on an atomic layer deposition technology, and relates to material surface treatment. The method comprises the following steps:1) carrying out pre-treatment on fluoride phosphor powder and placing the treated fluoride phosphor powder into a deposition chamber; 2) adjusting the temperature of the deposition chamber; 3) introducing trimethyl aluminum into the deposition chamber with nitrogen as a carrier gas, and purging the mixture; 4) stopping loading of trimethyl aluminum, introducing nitrogen gas into that deposition chamber, and purging the mixture; 5) stopping introduction of nitrogen gas, introducing ozone into the deposition chamber, and purging the mixture; 6) stopping introduction of ozone, introducing nitrogen gas into the deposition chamber, and purging the mixture; 7) repeating the steps 3) to 6); and 8) stopping introducing of nitrogen gas and naturally cooling the deposition chamber to obtain the coated fluoride phosphor powder. The reactant purging time is adjusted according to the repetition times so that the total reaction time does not exceed 2h, the temperature of the atomic layer depositioncoating operation is 50-90 DEG C and the time does not exceed 2h, and the coating adopts trimethyl aluminum and ozone as precursors.
Owner:XIAMEN UNIV

Chromite catalyst for trimerization of ethylene into 1-hexene and preparation and application thereof

The invention provides a chromite catalyst for trimerization of ethylene into 1-hexene and preparation and application thereof, raw materials for preparing the chromite catalyst comprise chromite organic acid salt, an electron donor, 2, 5-dimethyl pyrrole and a polydentate PNP compound, and at least one of trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, trioctyl aluminum, diethyl aluminum monochloride, ethyl aluminum dichloride, ethyl aluminum sesquichloride, methylaluminoxane, modified methylaluminoxane and ethyl aluminoxane. According to the chromite catalyst, a chromite source is adopted to synthesize a chromite organic metal compound, and the step of reducing trivalent chromium into chromite by aluminum alkyl is reduced by the generated catalyst, so that the active center is ensured to be + 2 valence, the loss of the catalyst is avoided, and meanwhile, the situation that the reaction selectivity is reduced and the product yield is influenced by excessive aluminum alkyl is avoided. Therefore, 1-hexene with high activity and good selectivity is developed, and the operation cost of the 1-hexene device is greatly reduced.
Owner:BEIJING CORETEAM ENG & TECH

Method for growing GaN-based luminous crystal film by metal organic chemical vapor deposition

The invention discloses a method for growing a GaN-based luminous crystal film by metal organic chemical vapor deposition. The method is characterized in that: trimethylborine or trimethylaluminium are doped in a raw material formula of the GaN crystal film in proportion, and boron or aluminum enter a GaN crystal lattice in a mode of trivalent ion in a growing process to regulate the ionic radius difference between rare-earth ions and Ga3+; the molar ratio of the raw material formula is that: Ga (CH3)3 to rare-earth organic complex to A(CH3)3 is (1-x-y):x:y, wherein the rare-earth organic complex is Re(TMHD)3 or Re (i-PrCp)3 taking rare-earth element Re as a core; A represents III group element boron or aluminum; x is more than or equal to 0.1 percent and less than or equal to 10.0 percent; and y is more than or equal to 0.1 time of the x and less than or equal to x. Because the organic complex of the III group element boron or aluminum and the rare-earth organic complex are co-doped in a certain proportion, the method can improve lattice distortion of the GaN crystal film caused by larger radius mismatch between Re3+ and Ga3+ to a large extent so as to improve the luminous performance of the GaN crystal film.
Owner:SUZHOU INST OF NANO TECH & NANO BIONICS CHINESE ACEDEMY OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products