Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1647results about "Gallium/indium/thallium compounds" patented technology

Reinforcing aluminum-based filler and rubber composition comprising such a filter

A reinforcing aluminum-based filler which can be used for reinforcing diene rubber compositions intended for the manufacture of tires, comprising an aluminum (oxide-)hydroxide corresponding, with the exception of any impurities and the water of hydration, to the general formula (a and b being real numbers):the specific BET surface area of which is between 30 and 400 m2 / g, the average particle size (by mass) dw of which is between 20 and 400 nm and the disagglomeration rate, alpha, of which, measured via an ultrasound disagglomeration test at 100% power of a 600-watt ultrasonic probe, is greater than 5x10-3 mum-1 / s is provided. A rubber composition suitable for the manufacture of tires comprising said aluminum-based filler as reinforcing filler.
Owner:MICHELIN & CO CIE GEN DES ESTAB MICHELIN

Synthesis of nanoparticles

The present invention relates to methods for the preparation of inorganic nanoparticles capable of fluorescence, wherein the nanoparticles consist of a host material that comprises at least one dopant. The synthesis of the invention in organic solvents allows to gain a considerably higher yield compared to the prior art synthesis in water. All kinds of objects can advantageously be marked and reliably authenticated by using an automated method on the basis of a characteristic emission. Further, the size distribution of the prepared nanoparticles is narrower which renders a subsequent size-selected separation process superfluous.
Owner:CENT FUR ANGEWANDTE NANOTECH

Process for abstracting earth silicon, oxide of alumina and gallium oxide from high-alumina flying ash

A method for extracting silicon dioxide, alumina and gallium oxide from high-alumina fly ash relates to the technology fields of environmental mineralogy and material, chemical industry and metallurgy. The method comprises the main steps as follows: causing the high-alumina fly ash to react with sodium hydroxide solution; filtering the solution; introducing CO2 to the filtrate for full gelation; cleaning, purifying, drying, grinding and calcining the silica gel after gel filtration to obtain finished white carbon black; adding limestone and a sodium carbonate solution into the filter mass after the reaction and filtration of the high-alumina fly ash and the sodium hydroxide solution; ball grinding the mixture into raw slurry; dissolving out the clinker obtained by baking the raw slurry; subjecting the filtrate to deep desiliconization to obtain sodium aluminate extraction liquid; filtrating the sodium aluminate extraction liquid after subjecting the sodium aluminate extraction liquid to carbon dioxide decomposition; baking the aluminum hydroxide after washing the filter mass to form the aluminum hydroxide product; and extracting the gallium oxide from the carbon dioxide decomposition mother solution and desiliconized solution. The method has the advantages of low material price, simple operating procedures, low investment, low production cost, low energy consumption and less slag.
Owner:TSINGHUA UNIV +1

Sintered polycrystalline gallium nitride and its production

Polycrystalline gallium nitride (GaN) characterized by having the atomic fraction of gallium ranging from between about 49% to 55%, an apparent density of between about 5.5 and 6.1 g / cm3, and a Vickers hardness of above about 1 GPa. Polycrystalline GaN can be made by hot isostatic pressing (HIPing) at a temperature ranging from about 1150° C. to 1300° C. and a pressure ranging from between about 1 and 10 Kbar. Alternatively, polycrystalline GaN can be made by high pressure / high temperature (HP / HT) sintering at a temperature ranging from about 1200° to 1800° C. and a pressure ranging from about 5 to 80 Kbar.
Owner:SLT TECH

Process For Manufacturing A Gallium Rich Gallium Nitride Film

A process for the manufacture of a gallium rich gallium nitride film is described. The process comprises (a) preparing a reaction mixture containing a gallium species and a nitrogen species, the gallium species and the nitrogen species being selected such that, when they react with each other, gallium nitride is formed; and (b) growing the gallium rich gallium nitride film from the reaction mixture, by allowing the gallium species to react with the nitrogen species and to deposit gallium nitride on a substrate selected from the group consisting of silicon, glass, sapphire, quartz and crystalline materials having a lattice constant closely matched to gallium nitride, including zinc oxide, optionally with a zinc oxide buffer layer, at a temperature of from about 480° C. to about 900° C. and in the presence of a gaseous environment in which the partial pressure of oxygen is less than 10−4 Torr, wherein the ratio of gallium atoms to nitrogen atoms in the gallium rich gallium nitride film is from 1.01 to 1.20. The invention also provides the option of annealing the gallium rich gallium nitride film at a temperature of from about 20° C. to about 650° C. and for a time sufficient to decrease the resistivity of the film so that it becomes electrically conductive, for instance to a resistivity below 100 ohm.cm.
Owner:BUTCHER KENNETH SCOTT ALEXANDER +2

Lithium-ion-conductive solid electrolyte and solid-electrolyte lithium battery

A lithium-ion-conductive solid electrolyte includes a lithium-ion-conductive substance expressed by a general formula Li2S-GeS2-X wherein "X" is at least one member selected from the group consisting of Ga2S3 and ZnS, or Li2S-SiS2-P2S5. It is superb in terms of stability and safety at elevated temperatures, since it is a crystalline solid of high ion conductivity. It can be applied to a solid electrolyte for lithium batteries.
Owner:TOYOTA JIDOSHA KK +1

Metal oxide particle and its uses

An object of the present invention is to provide a metal oxide particle which exercises more excellent ultraviolet absorbency as a matter of course and combines therewith merits of, for example, either being shifted in ultraviolet absorption edge toward the longer wavelength side and being excellent also in the absorption efficiency of a long-wavelength range of ultraviolet rays, or having good transparency and, for example, even in cases where added into or coated onto substrates, not damaging the transparency or hue of the substrates. As a means of achieving this object, a metal oxide particle according to the present invention is a metal oxide particle such that a hetero-element is contained in a particle comprising an oxide of a specific metal element (M), wherein the metal oxide particle is: 1) a metal oxide particle in the form of a fine particle wherein the hetero-element is at least one specific metal element (M′); 2) a metal oxide particle wherein the hetero-element includes at least two specific metal elements (M′); 3) a metal oxide particle wherein: the hetero-element is a more specified metal element (M′) and at least a part thereof is 2 in valence; or the metal element (M) is a more specified metal element and the metal oxide particle is in a specific range in crystal grain diameter in the vertical direction to each of the (002) plane and the (100) plane; or 4) a metal oxide particle wherein: the hetero-element is at least one specific nonmetal element and an acyl group is contained in the particle; or the hetero-element includes at least two specific nonmetal elements; or the hetero-element is at least one specific nonmetal element and a component derived from a metal element (M′) other than the metal element (M) is contained in the particle.
Owner:NIPPON SHOKUBAI CO LTD

Sputtering Target and Oxide Semiconductor Film

A sputtering target containing oxides of indium (In), gallium (Ga) and zinc (Zn), which includes a compound shown by ZnGa2O4 and a compound shown by InGaZnO4.
Owner:IDEMITSU KOSAN CO LTD

Production Of Barium Titanate Compounds

An ultrafine powder of barium titanate including solid solutions and doped compounds that meets up to specific characteristics is produced by method comprising two main steps. The first step is a reaction, typically in a Segmented Flow Tubular Reactor, between reactants to produce cubic-structure barium titanate composed of non-agglomerated ultrafine particles having a shape of given aspect ratio, usually a generally spherical shape, of low density corresponding at most to 90% of the intrinsic density, all particles being smaller than 1 micron and having a narrow particle size distribution and wherein the ratio of Ba:Ti including substitutents and dopants is very close to the ideal stoichiometry. This is followed by subjecting the powder produced in the first step to a second stage solvothermal post treatment typically in an autoclave at temperature less than 400° C. to convert the cubic-structure particles of low density to ultrafine tetragonal particles of increased density corresponding to at least 90% of the intrinsic density while maintaining the same aspect ratio, and maintaining the size of all particles below 1 micron, the narrow particle size distribution span, and the given ideal stoichiometry. The produced particles can have a non-spherical facetted shape such as cube-like.
Owner:JONGEN NATHALIE +1

Group ii alloyed i-iii-vi semiconductor nanocrystal compositions and methods of making same

A semiconductor nanocrystal composition that is stable and has high luminescent quantum yield. The semiconductor nanocrystal composition has a semiconductor nanocrystal core of a group II alloyed I-III-VI semiconductor nanocrystal material. A method of making a semiconductor nanocrystal composition is also provides which includes synthesizing a semiconductor nanocrystal core of a group II alloyed I-III-VI semiconductor material.
Owner:EVIDENT TECH

Method for recycling spent lithium metal polymer rechargeable batteries and related materials

The method relates to a pyrometallurgical and hydrometallurgical process for the recovery and recycling of lithium and vanadium compounds from a material comprising spent rechargeable lithium batteries, particularly lithium metal gel and solid polymer electrolyte rechargeable batteries. The method involves providing a mass of the material, hardening it by cooling at a temperature below room temperature, comminuting the mass of cooled and hardened material, digesting with an acid its ashes obtained by incineration, or its solidified salts obtained by molten salt oxidation, or the comminuted mass itself, to give a mother liquor, extracting vanadium compounds from the mother liquor, separating heavy metals and aluminium therefrom, and precipitating lithium carbonate from the remaining solution.
Owner:AVESTOR

Method for growing group III-nitride crystals in a mixture of supercritical ammonia and nitrogen, and group III-nitride crystals grown thereby

A method of growing group III-nitride crystals in a mixture of supercritical ammonia and nitrogen, and the group-III crystals grown by this method. The group III-nitride crystal is grown in a reaction vessel in supercritical ammonia using a source material or nutrient that is polycrystalline group III-nitride, amorphous group III-nitride, group-III metal or a mixture of the above, and a seed crystal that is a group-III nitride single crystal. In order to grow high-quality group III-nitride crystals, the crystallization temperature is set at 550° C. or higher. Theoretical calculations show that dissociation of NH3 at this temperature is significant. However, the dissociation of NH3 is avoided by adding extra N2 pressure after filling the reaction vessel with NH3.
Owner:JAPAN SCI & TECH CORP

Chemical processing using non-thermal discharge plasma

A method for activating chemical reactions using a non-thermal capillary discharge plasma (NT-CDP) unit or a non-thermal slot discharge plasma (NT-SDP) unit (collectively referred to as “NT-CDP / SDP”). The NT-CDP / SDP unit includes a first electrode disposed between two dielectric layers, wherein the first electrode and dielectric layers having at least one opening (e.g., capillary or a slot) defined therethrough. A dielectric sleeve inserted into the opening, and at least one second electrode (e.g., in the shape of a pin, ring, metal wire, or tapered metal blade) is disposed in fluid communication with an associated opening. A non-thermal plasma discharge is emitted from the opening when a voltage differential is applied between the first and second electrodes. Chemical feedstock to be treated is then exposed to the non-thermal plasma. This processing is suited for the following exemplary chemical reactions as (i) partial oxidation of hydrocarbon feedstock to produce functionalized organic compounds; (ii) chemical stabilization of a polymer fiber (e.g., PAN fiber precursor in carbon fiber production; (iii) pre-reforming of higher chain length petroleum hydrocarbons to generate a feedstock suitable for reforming; (iv) natural gas reforming in a chemically reducing atmosphere (e.g., ammonia or urea) to produce carbon monoxide and Hydrogen gas; or (v) plasma enhanced water gas shifting.
Owner:PLASMASOL CORP

B-ga2o3 single crystal growing method, thin-film single crystal growing method, ga2o3 light-emitting device, and its manufacturing method

PROBLEM TO BE SOLVED: To provide a method for growing a β-f-based single crystal which is less prone to be cracked even when it is worked into a large size and high quality substrate or the like. ŽSOLUTION: The β-Ga<SB>2< / SB>O<SB>3< / SB>single crystal 8 is allowed to grow in one orientation selected from a-axis <100> orientation, b-axis <010> orientation, and the orientation inclined by 13.7°, determined crystallographically, from c-axis toward a-axis and having an angle of 90° with respect to a-axis by heating a seed crystal 7 and a polycrystalline base material 9 while rotating the crystal 7 and the base material 9 mutually in the opposite directions by using an infrared heating single crystal manufacturing device 1. Ž
Owner:WASEDA UNIV

Method for producing fine particles of metal oxide

A method for producing fine particles of metal oxide characterized in that metal halide is hydrolyzed in the presence of organic solvent. According to this invention, under hydrolysis of titanium tetrachrolide, anatase type titanium oxide can be obtained by selecting hydrophilic organic solvent, and rutile type titanium oxide can be obtained by selecting hydrophobic organic solvent.
Owner:SHOWA DENKO KK

Paste containing nanoscale powder and dispersant and dispersion made therefrom

A paste is provided having as solid phase at least one nanoscale powder and as liquid phase at least one dispersant, wherein the fraction of the nanoscale powder is 30% to 95% by weight and the fraction of the liquid phase is at least 5% by weight, based in each case on the total amount of the paste, the paste has a water content of less than 3% by weight of water and the liquid phase has a VOC content of less than 10 g / l, and the use of the paste in preparing dispersions, the dispersions prepared thereby, and use in a variety of other enduses.
Owner:EVONIK DEGUSSA GMBH

Method for manufacturing semiconductor device

An object is to provide a semiconductor device including a semiconductor element which has favorable characteristics. A manufacturing method of the present invention includes the steps of: forming a first conductive layer which functions as a gate electrode over a substrate; forming a first insulating layer to cover the first conductive layer; forming a semiconductor layer over the first insulating layer so that part of the semiconductor layer overlaps with the first conductive layer; forming a second conductive layer to be electrically connected to the semiconductor layer; forming a second insulating layer to cover the semiconductor layer and the second conductive layer; forming a third conductive layer to be electrically connected to the second conductive layer; performing first heat treatment after forming the semiconductor layer and before forming the second insulating layer; and performing second heat treatment after forming the second insulating layer.
Owner:SEMICON ENERGY LAB CO LTD

Synthetic control of metal oxide nanocrystal sizes and shapes

A general, reproducible, and simple synthetic method that employs readily available chemicals permits control of the size, shape, and size distribution of metal oxide nanocrystals. The synthesis entails reacting a metal fatty acid salt, the corresponding fatty acid, and a hydrocarbon solvent, with the reaction product being pyrolyzed to the metal oxide. Nearly monodisperse oxide nanocrystals of Fe3O4, Cr2O3, MnO, Co3O4, NiO, ZnO, SnO2, and In2O3, in a large size range (3-50 nm), are described. Size and shape control of the nanocrystals is achieved by varying the reactivity and concentration of the precursors.
Owner:THE BOARD OF TRUSTEES OF THE UNIV OF ARKANSAS

Alumina abrasive for chemical mechanical polishing

Methods of manufacturing alumina abrasive for use in chemical mechanical polishing are described, wherein the abrasive is in a slurry having gamma alumina formed in a low temperature fuming process, water, an acid sufficient to maintain the pH below about 7, wherein the slurry does not settle appreciably in an 8 to 24 hour period. Advantageously, the alumina is wet-milled without the use of wet-milling salt additives.
Owner:VERSUM MATERIALS US LLC +1

Fluorescent substance, light-emitting diode and method for producing fluorescent substance

A fluorescent substance is obtained by weighing and mixing CaS, Ga2S3, EuS and Ce2S3 in a mole ratio of (1-x):a:x:y (wherein 0.001≦x≦0.2, 0.0001≦y≦0.02 and 0.5≦a≦5) and by sintering the mixture. A light-emitting diode comprises an LED chip 2 and an LED chip sealing portion 5, made of silicone resin and including the fluorescent substance, for enclosing the LED chip 2. Hence, a fluorescent substance that is excited by light having a predetermined wavelength to emit light, a light-emitting diode having excellent luminous efficiency and luminous intensity, and a method for producing the fluorescent substance are attained by the present invention.
Owner:SEIWA ELECTRIC MFG CO LTD

Method of producing aluminum oxides and products obtained on the basis thereof

The invention relates to the field of technical ceramics and specifically relates to a method of synthesis for aluminum oxides of different crystalline structure and to the products obtained by the method. The aim of the invention is to provide a method of producing redispersible nanoparticulate corundum and nanoporous Al2O3 sintered products, the method using precursors and being viable on a commercial scale. To this aim, inter alia, a method of producing redispersible nanoparticulate corundum of an average particle size of D50<100 nm is used which method includes the addition of crystal nuclei. According to the method, organic or chlorine-free inorganic precursors are dissolved or processed to a sol and hydrolyzed. The substance is then dried and calcinated at temperatures of between 350 and 650° C. and is then further heated by increasing the temperature to ≦950° C. The aim of the invention is also attained by using a method of producing nanoporous Al2O3 sintered products according to which organic or chlorine-free inorganic precursors are dissolved or processed to a sol and hydrolyzed. The substance is then dried and calcinated at temperatures of between 350 and 750° C.
Owner:FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG EV

Oxide semiconductor film and semiconductor device

To provide an oxide semiconductor film having stable electric conductivity and a highly reliable semiconductor device having stable electric characteristics by using the oxide semiconductor film. The oxide semiconductor film contains indium (In), gallium (Ga), and zinc (Zn) and includes a c-axis-aligned crystalline region aligned in the direction parallel to a normal vector of a surface where the oxide semiconductor film is formed. Further, the composition of the c-axis-aligned crystalline region is represented by In1+δGa1−δO3(ZnO)m (0<δ<1 and m=1 to 3 are satisfied), and the composition of the entire oxide semiconductor film including the c-axis-aligned crystalline region is represented by InxGayO3(ZnO)m (0<x<2, 0<y<2, and m=1 to 3 are satisfied).
Owner:SEMICON ENERGY LAB CO LTD

Dextran starch and flocculant combination for improving red mud clarification

The claimed invention is a method for separating Bayer process red mud from a Bayer process liquor which comprises adding to a Bayer process liquor containing red mud an effective amount of a water soluble synthetic flocculant, dextran and starch combination. The flocculant is added anywhere in the slurry containing the red mud suspended in Bayer process liquor, or in a liquor slurry containing bauxite prior to or during digestion. Once the flocculant combination is added, it is mixed sequentially with the Bayer process liquor and the red mud contained in the Bayer process liquor is removed by sedimentation, centrifugation or filtration.
Owner:ECOLAB USA INC

Metal oxide nanostructures with hierarchical morphology

The present invention relates generally to metal oxide materials with varied symmetrical nanostructure morphologies. In particular, the present invention provides metal oxide materials comprising one or more metallic oxides with three-dimensionally ordered nanostructural morphologies, including hierarchical morphologies. The present invention also provides methods for producing such metal oxide materials.
Owner:TRUSTEES OF BOSTON COLLEGE THE

Process for recovery of gallium

The present invention relates to a process for the recovery of gallium from Bayer process liquors. Bayer process liquor is obtained from alumina industries and contains 450 g / L Na2O, 80 g / L Al2O3 and 190±20 ppm of gallium. The present invention utilizes an organic and inorganic phase for a two stage separation process to recover gallium with high purity.
Owner:COUNCIL OF SCI & IND RES
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products