Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

16198 results about "Organosolv" patented technology

In industrial paper-making processes, organosolv is a pulping technique that uses an organic solvent to solubilise lignin and hemicellulose. It has been considered in the context of both pulp and paper manufacture and biorefining for subsequent conversion of cellulose to fuel ethanol. The process was invented by Theodor Kleinert in 1968 as an environmentally benign alternative to kraft pulping.

A kind of non-aqueous electrolytic solution for lithium secondary battery

The invention relates to a non-aqueous electrolytic solution used for lithium secondary batteries, in particular to an electrolytic solution capable of improving the high-voltage cycle performance of lithium batteries and the storage performance of the electrolytic solution. The non-aqueous electrolytic solution disclosed by the invention contains 0.01-2% by weight of antioxidant based on the total weight of the electrolytic solution, and due to the incorporation of the additives, the storage stability of the electrolytic solution is obviously improved. The non-aqueous electrolytic solution also contains lithium salt, a non-aqueous organic solvent and also contains the following components in percentage by total weight of the electrolytic solution of 0.5-7 percent of film-forming additives, 0-15 percent of flame-retardant additives, 2-10 percent of overcharge protection additives, 0.01-0.02 percent of a stabilizing agent and 0.01-1 percent of a wetting agent. According to the non-aqueous electrolytic solution provided by the invention, batteries can stably work under the high voltage of 4.3V or above, due to the synergic action of the incorporated additives with various functions, the high-capacity lithium-ion batteries can bring high specific energy into full play and have outstanding safety and high-temperature performances and cycle life.
Owner:JIUJIANG TINCI ADVANCED MATERIALS CO LTD

Electrolyte for lithium secondary battery and lithium secondary battery using the same

An electrolyte for a lithium secondary battery, the electrolyte including: a lithium salt; a non-aqueous organic solvent; and a piperazine derivative represented by Formula 1 having an oxidation potential lower than an oxidation potential of the non-aqueous organic solvent by about 2 V to about 4 V:wherein, in Formula 1, X, Y, and R1 to R4 are defined in the specification.
Owner:SAMSUNG ELECTRONICS CO LTD

Lignin polyurethane and preparation method thereof

The invention discloses a method for preparing lignin polyurethane, which comprises the following steps of: using an organic solvent to dissolve the lignin which is extracted and separated from residues after producing ethanol from straws by sodium hydroxide; removing the residues, and depositing the mixture with water; separating the lignin; modifying the lignin with an epoxide; dissolving the lignin into a polylol; and finally compounding the lignin with raw materials of isocyanate and the like to obtain a polyurethane material. The lignin used in the method has high reactivity which can be further enhanced through modification so as to obtain a lignin polyurethane material; the polylol used in the method not only can be used as a solvent but also can take part in a synthetic reaction, has good dissolvability to the lignin, and ensures that undissolved lignin particles cannot appear in a polyurethane foam material; and the link for polyurethane synthesis uses no volatile organic solvents, so the production process causes no pollution to the environment, and simultaneously the cost of a polyurethane product is reduced.
Owner:SOUTH CHINA UNIV OF TECH

In-situ composite silicon-based multibasic oxide oxide aerogel material and preparation method thereof

The invention relates to an in-situ composite silicon-based multibasic oxide oxide aerogel material and its preparation method, especially to a multibasic oxide oxide aerogel material which is prepared by the following steps: using soluble glass as a silicon source, mixing metallic oxide corresponding water-soluble metal salt, adding acid or alkali to adjust pH value of the system so as to form multibasic oxide sol; mixing the multibasic oxide sol with a water-soluble organic solvent, filtering to remove produced precipitate so as to obtain salt-free multibasic oxide sol, carrying out a sol-gel method, aging, modifying and drying. By a mature silica aerogel technology, the multibasic oxide oxide aerogel material is prepared by in-situ polymerization of other oxide components which are not easy to separately prepare aerogel. In addition, the multibasic oxide oxide aerogel material has excellent properties, such as high temperature stability, high activity, magnetic property and the like, none of which are present in single-component silica aerogel. The product is widely applied in fields of high temperature insulation, sound insulation, catalysts, catalytic carriers, battery electrodes, electromagnetism, resistance, gas sensitivity, humidity sensitivity, luminescent materials and the like.
Owner:金承黎

Preparation of a carbon nanomaterial using a reverse microemulsion

Powdered, amorphous carbon nanomaterials are formed from a carbon precursor in reverse microemulsion that includes organic solvent, surfactant and water. Methods for manufacturing amorphous, powdered carbon nanomaterials generally include steps of (1) forming a reverse microemulsion including at least one non-polar solvent, at least one surfactant, and at least one polar solvent, (2) adding at least one carbon precursor substance to the reverse microemulsion, (3) reacting the at least one carbon precursor substance so as to form an intermediate carbon nanomaterial, (4) separating the intermediate amorphous carbon nanomaterial from the reverse microemulsion, and (5) heating the intermediate amorphous carbon nanomaterial for a period of time so as to yield an amorphous, powdered carbon nanomaterial. Amorphous, powdered carbon nanomaterials manufactured according to the present disclosure typically have a surface area of at least 500 m2 / g, a graphitic content of at least 25%, and a conductivity of at least 150 S / m.
Owner:HEADWATERS TECH INNOVATION GRP

Method of separating anionic fluorochemical surfactant

Separation of an anionic fluorochemical surfactant from an aqueous solution containing the anionic fluorochemical surfactant is carried out by i) contacting the aqueous solution with a basic anion-exchange resin so that the anionic fluorochemical surfactant is adsorbed on the resin, and ii) eluting the anionic fluorochemical surfactant adsorbed on the resin with an eluent which is an alkaline solution containing water and an organic solvent.
Owner:DAIKIN IND LTD

Process for extraction and purification of paclitaxel from natural sources

A process for the extraction and purification of Paclitaxel from a natural source of taxanes, comprising extracting Paclitaxel with an organic solvent from a natural source of taxanes, and treating the raw material with a base or an acid to obtain a biomass by precipitation. The biomass is isolated and dried, and resin and natural pigments are removed. The biomass is then dissolved in acetone and at least one non-polar solvent is added, until a Paclitaxel-enriched oily phase is obtained. The Paclitaxel-enriched oily phase is then treated with a base or an acid to obtain a second biomass, which is recovered by precipitation and dried. A solution of the second biomass in a volatile solvent is chromatographically purified at least once and crystallized.
Owner:CHAICHEM PHARMA INT

Preparation method of catalyst for acrylic acid by oxidizing acraldehyde

The invention relates to a preparation method of a catalyst for acrylic acid by oxidizing acraldehyde, which is characterized by comprising the following steps of: dispersing water soluble metal salts containing the components of Mo, V, W, Cu and Sb into a water/organic phase mixed system at the temperature of 30-100DEG C; maintaining the weight ratio of an organic solvent to water as 5-50 percent; reacting to generate composite oxide precursor serum; separating water by a distilling process under the condition of continuously supplementing organic phases at the temperature of 20-120DEG C, wherein the water content of distillate is not greater than 10 percent; then, pelleting by a spray drying process and roasting at the temperature of 200-600DEG C to prepare catalyst active components; mixing primary roasting powder, a forming additive and a strength improver; coating the active components on the surface of an inert carrier by using an adhesive, wherein the carrying capacity occupies5-70 percent of the total quantity of the catalyst; drying a formed product for 5-48 hours at room temperature; and then, roasting the formed product for 1-15 hours at the temperature of 200-600DEG Cto obtain a spherical catalyst with the active components carried on the inert carrier.
Owner:CHINA NAT OFFSHORE OIL CORP +1

Antimicrobial hard surface cleaner

The invention provides an improved, non- or minimized streaking / filming antimicrobial formulation, the cleaner containing: a. an akoxylated quaternary ammonium surfactant, present in a cleaning-effective amount; b. an alkoxylated short chain nonionic surfactant, also present in a cleaning-effective amount; c. alkanolamine as an alkalinity source, present in an amount effective to enhance soil removal in said cleaner; d. a quaternary ammonium compound in an amount present for antimicrobial efficacy; e. at least one water-soluble or dispersible organic solvent having a vapor pressure of at least 0.001 mm Hg at 25° C., said at least one organic solvent present in a solubilizing-or dispersion-effective amount; and f. the remainder, water.
Owner:THE CLOROX CO

High-strength transparent cellulose material and preparation method thereof

The invention discloses a transparent high-strength fiber material. The preparation method comprises the following steps that: cellulose is dissolved in NaOH-urea aqueous solution or LiOH-urea aqueous solution which is pre-cooled at low temperature to obtain a cellulose solution, and different thicknesses of cellulose hydrogels are prepared by the cellulose solution; water in the cellulose hydrogel is replaced into an organic solvent to obtain a cellulose organic gel; the cellulose hydrogel or the cellulose organic gel is subject to supercritical drying, ambient pressure drying or freeze drying to remove a liquid medium so as to obtain a cellulose aerogel; and the cellulose hydrogel, the organic gel or the aerogel are autoclaved at a temperature of 30-200 DEG C under the pressure of 10-160Mpa to obtain the high-strength transparent cellulose material. The cellulose material prepared by the invention has excellent mechanical properties, thermal stability and optical permeability.
Owner:WUHAN UNIV

Granular pesticide fertilizer, and preparation method and application thereof

InactiveCN102775241AReduce stress on the farm environmentSave resourcesFertiliser formsFertilizer mixturesFertilizerPesticide
The invention provides a granular pesticide fertilizer, and a preparation method and application thereof. The granular pesticide fertilizer comprises the following components expressed in mass percent: on the basis that the total mass of the granular pesticide fertilizer is 100%, 0.001 to 20% of a pesticide active component, 70 to 99% of a granular fertilizer carrier, 0.05 to 9% of an organic solvent, 0.05 to 0.5% of a surfactant and 0.05 to 0.5% of a coating agent. According to embodiments in the invention, the pesticide active component and the granular fertilizer carrier in the granular pesticide fertilizer are reasonably combined, which allows the problem of damage by diseases and insects to soil in agricultural production to be effectively overcome and enables soil fertility to be improved and labor and time to be saved. The granular pesticide fertilizer is produced by using a normal temperature spraying adsorption process and a cladding process, so the preparation method for the granular pesticide fertilizer has the advantages of a simple process, low energy consumption, reduction in production cost, easiness in controlling and operating and suitability for industrial production.
Owner:SHENZHEN NOPOSION AGROCHEM
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products