Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

124results about How to "Increase impurity concentration" patented technology

Semiconductor device with alternating conductivity type layer and method of manufacturing the same

A semiconductor device having an alternating conductivity type layer improves the tradeoff between the on-resistance and the breakdown voltage and facilitates increasing the current capacity by reducing the on-resistance while maintaining a high breakdown voltage. The semiconductor device includes a semiconductive substrate region, through which a current flows in the ON-state of the device and that is depleted in the OFF-state. The semiconductive substrate region includes a plurality of vertical alignments of n-type buried regions 32 and a plurality of vertical alignments of p-type buried regions. The vertically aligned n-type buried regions and the vertically aligned p-type buried regions are alternately arranged horizontally. The n-type buried regions and p-type buried regions are formed by diffusing respective impurities into highly resistive n-type layers 32a laminated one by one epitaxially.
Owner:FUJI ELECTRIC CO LTD

Method of manufacturing a semiconductor device with a vertical drain drift layer of the alternating-conductivity-type

A semiconductor device includes an improved drain drift layer structure of alternating conductivity types, that is easy to manufacture, and that facilitates realizing a high current capacity and a high breakdown voltage and to provide a method of manufacturing the semiconductor device. The vertical MOSFET according to the invention includes an alternating-conductivity-type drain drift layer on an n+-type drain layer as a substrate. The alternating-conductivity-type drain drift layer is formed of n-type drift current path regions and p-type partition regions alternately arranged laterally with each other. The n-type drift current path regions and p-type partition regions extend in perpendicular to n+-type drain layer. Each p-type partition region is formed by vertically connecting p-type buried diffusion unit regions Up. The n-type drift current path regions are residual regions, left after connecting p-type buried diffusion unit regions Up, with the conductivity type thereof unchanged. The alternating-conductivity-type drain drift layer is formed by repeating the step of epitaxial layer growth and the step of implanting p-type impurity ions and by diffusing the impurity ions at once from the impurity sources located on multiple levels.
Owner:FUJI ELECTRIC CO LTD

Method for manufacturing semiconductor device

The present invention discloses a method for manufacturing a semiconductor device, comprising the steps of: providing a semiconductor substrate on which cell strings are formed and in which a plurality of conductive regions are formed; sequentially forming a first interlayer insulation film and a first etch barrier film on the semiconductor substrate; forming a plurality of contact holes by exposing the plurality of conductive regions formed in the semiconductor substrate, wherein an impurity concentration of the conductive regions is reduced due to the process for forming the contact holes; filling a metal material in the contact holes and forming a plurality of contact plugs; sequentially forming a second interlayer insulation film, a second etch barrier film and a third interlayer insulation film over a resulting structure including the contact plugs; forming a plurality of metal line patterns, wherein the metal line patterns pass through the third interlayer insulation film, the second etch barrier film and the second interlayer insulation film and contact to the contact plugs; forming a fourth interlayer insulation film over a resulting structure including the plurality of metal line patterns; forming a plurality of metal line contact holes by patterning the fourth interlayer insulation film; and forming a plurality of metal line contact plugs in the plurality of metal line contact holes by filling a metal material in the metal line contact holes.
Owner:STMICROELECTRONICS SRL +1

LDMOS transistor

A lateral double-diffused metal oxide semiconductor transistor (LDMOS) transistor includes a semiconductor substrate of a first conductivity; an extended drain region of the first conductivity formed in a surface region of the semiconductor substrate; and a depletion region, formed in the extended drain region, including first and second impurity regions sequentially embedded below a surface of the extended drain region, the first embedded impurity region being of a second conductivity and the second embedded impurity region being of the first conductivity.
Owner:DONGBU ELECTRONICS CO LTD

Semiconductor integrated circuit device having switching misfet and capacitor element and method of producing the same, including wiring therefor and method of producing such wiring

A semiconductor integrated circuit device having a switching MISFET, and a capacitor element formed over the semiconductor substrate, such as a DRAM, is disclosed. In a first aspect of the present invention, the impurity concentration of the semiconductor region of the switching MISFET to which the capacitor element is connected is less than the impurity concentration of semiconductor regions of MISFETs of peripheral circuitry. In a second aspect, the Y-select signal line overlaps the lower electrode layer of the capacitor element. In a third aspect, a potential barrier layer, provided at least under the semiconductor region of the switching MISFET to which the capacitor element is connected, is formed by diffusion of an impurity for a channel stopper region. In a fourth aspect, the dielectric film of the capacitor element is co-extensive with the capacitor electrode layer over it. In a fifth aspect, the capacitor dielectric film is a silicon nitride film having a silicon oxide layer thereon, the silicon oxide layer being formed by oxidizing a surface layer of the silicon nitride under high pressure. In sixth and seventh aspects, wiring is provided. In the sixth aspect, an aluminum wiring layer and a protective (and/or barrier) layer are formed by sputtering in the same vacuum sputtering chamber without breaking the vacuum between forming the layers; in the seventh aspect, a refractory metal, or a refractory metal suicide QSi.sub.x, where Q is a refractory metal and 0<x<2, is used as a protective layer, for an aluminum wiring containing an added element (e.g., Cu) to prevent migration.
Owner:HITACHI LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products