Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

9632 results about "Zirconium oxide" patented technology

Zirconium oxide. n. A hard white amorphous powder, ZrO 2, derived from zirconium and also found naturally, used chiefly in pigments, refractories, and ceramics and as an abrasive. n. (Elements & Compounds) a white amorphous powder that is insoluble in water and highly refractory, used as a pigment for paints, a catalyst, and an abrasive.

Apparatuses and methods for atomic layer deposition of hafnium-containing high-k dielectric materials

Embodiments of the invention provide methods for depositing dielectric materials on substrates during vapor deposition processes, such as atomic layer deposition (ALD). In one example, a method includes sequentially exposing a substrate to a hafnium precursor and an oxidizing gas to deposit a hafnium oxide material thereon. In another example, a hafnium silicate material is deposited by sequentially exposing a substrate to the oxidizing gas and a process gas containing a hafnium precursor and a silicon precursor. The oxidizing gas usually contains water vapor formed by flowing a hydrogen source gas and an oxygen source gas through a water vapor generator. In another example, a method includes sequentially exposing a substrate to the oxidizing gas and at least one precursor to deposit hafnium oxide, zirconium oxide, lanthanum oxide, tantalum oxide, titanium oxide, aluminum oxide, silicon oxide, aluminates thereof, silicates thereof, derivatives thereof or combinations thereof.
Owner:APPLIED MATERIALS INC

Atomic layer deposition of high-k metal oxides

The present invention relates to the atomic layer deposition (“ALD”) of high k dielectric layers of metal oxides containing Group 4 metals, including hafnium oxide, zirconium oxide, and titanium oxide. More particularly, the present invention relates to the ALD formation of Group 4 metal oxide films using an metal alkyl amide as a metal organic precursor and ozone as a co-reactant.
Owner:AVIZA TECHNOLOGY INC +1

Yttria-based material coated chemical vapor deposition chamber heater

Embodiments of the present invention generally relate to heated substrate supports having a protective coating thereon. The protective coating is formed from yttrium oxide at a molar concentration ranging from about 50 mole percent to about 75 mole percent; zirconium oxide at a molar concentration ranging from about 10 mole percent to about 30 mole percent; and at least one other component, selected from the group consisting of aluminum oxide, hafnium oxide, scandium oxide, neodymium oxide, niobium oxide, samarium oxide, ytterbium oxide, erbium oxide, cerium oxide, and combinations thereof, at a molar concentration ranging from about 10 mole percent to about 30 mole percent. The alloying of yttrium oxide with a compatible oxide improves wear resistance, flexural strength, and fracture toughness of the protective coating, relative to pure yttrium oxide.
Owner:APPLIED MATERIALS INC

Method for forming a thin, high quality buffer layer in a field effect transistor and related structure

According to one exemplary embodiment, a method for forming a field-effect transistor on a substrate comprises a step of forming a buffer layer on the substrate, where the buffer layer comprises ALD silicon dioxide. The buffer layer can be formed by utilizing a silicon tetrachloride precursor in an atomic layer deposition process, for example. The buffer layer comprises substantially no pin-hole defects and may have a thickness, for example, that is less than approximately 5.0 Angstroms. The method further comprises forming a high-k dielectric layer over the buffer layer. The high-k dielectric layer may be, for example, hafnium oxide, zirconium oxide, or aluminum oxide. According to this exemplary embodiment, the method further comprises forming a gate electrode layer over the high-k dielectric layer. The gate electrode layer may be polycrystalline silicon, for example.
Owner:GLOBALFOUNDRIES US INC

Insulating film, method of manufacturing the same, and semiconductor device

An exemplary aspect of the invention provides an insulating film which has a high dielectric constant and has small leakage current even when it is sandwiched between electrodes. The insulating film comprises two zirconium oxide layers in crystallized state; and an intergranular isolating layer composed of an amorphous material having a dielectric constant higher than that of zirconium oxide in crystallized state; wherein the intergranular isolating layer is sandwiched between the two zirconium oxide layers. The insulating film is properly used as a capacitive insulating film in a semiconductor device comprising a memory cell including a capacitor element having the capacitive insulating film between an upper electrode and a lower electrode, or as an intergate insulating film in a semiconductor device comprising a nonvolatile memory device having the intergate insulating film between a control gate electrode and a floating gate electrode.
Owner:ELPIDA MEMORY INC

Method for manufacturing semiconductor device

A method for manufacturing a semiconductor device includes at least forming a lower electrode made of titanium nitride on a semiconductor substrate, forming a dielectric film comprising zirconium oxide, in which at least the uppermost layer of the dielectric film is formed by an atomic layer deposition (ALD) method on the lower electrode, forming a first protective film on the dielectric film without exceeding the film forming temperature of the ALD method over 70° C., and forming an upper electrode made of a titanium nitride on the first protective film.
Owner:ELPIDA MEMORY INC

Multilayer thermal barrier coating

InactiveUS20090324989A1Improved thermal barrier coatingAttackLiquid surface applicatorsMolten spray coatingThermal barrier coatingZirconium oxide
Components (1) have a thermal barrier coating (2-6) on the surface thereof, wherein the thermal barrier coating includes at least one layer (3) having chemically stabilized zirconia, and wherein at least indirectly adjacent to the layer (3) with chemically stabilized zirconia and on its surface facing side, there is provided a protective layer (4) and / or a infiltration zone (5) which does not react with environmental contaminant compositions that contain oxides of calcium and which does not react with the material of the layer (3) having chemically stabilized zirconia. Methods for making such components as well as to uses of specific systems for coating thermal barrier coatings, can prevent CMAS.
Owner:ANSALDO ENERGIA IP UK LTD +1

Zirconium oxide and hafnium oxide etching using halogen containing chemicals

A method is described for selectively etching a high k dielectric layer that is preferably a hafnium or zirconium oxide, silicate, nitride, or oxynitride with a selectivity of greater than 2:1 relative to silicon oxide, polysilicon, or silicon. The plasma etch chemistry is comprised of one or more halogen containing gases such as CF4, CHF3, CH2F2, CH3F, C4F8, C4F6, C5F6, BCl3, Br2, HF, HCl, HBr, HI, and NF3 and leaves no etch residues. An inert gas or an inert gas and oxidant gas may be added to the halogen containing gas. In one embodiment, a high k gate dielectric layer is removed on portions of an active area in a MOS transistor. Alternatively, the high k dielectric layer is used in a capacitor between two conducting layers and is selectively removed from portions of an ILD layer.
Owner:TAIWAN SEMICON MFG CO LTD

Acid Zirconium Phosphate and Alkaline Hydrous Zirconium Oxide Materials For Sorbent Dialysis

A combination of acid zirconium phosphate and alkaline hydrous zirconium oxide are utilized as ion-exchange materials, for example, in sorbent dialysis. The combination provides for dialysate regeneration while maintaining constant and controlled levels of Na+, HCO3−, and pH.
Owner:FRESENIUS MEDICAL CARE HLDG INC

Metal-ceramic composite articulation

A ceramic-metal composite articulation is provided with substantial elimination of wear debris, wherein a ceramic material is provided with superior mechanical properties tailored for articulating with ceramic articulations having high flexural strength (greater than about 700 MPa), high fracture toughness (greater than about 7 MPa1 / 2) and a high Weibull modulus (greater than about 20), in comparison with presently available bio-ceramics such as alumina or zirconia. The mechanical property enhancement enables ceramic materials with greater reliability and significantly reduced in-vivo fracture risk to be obtained. Preliminary in-vitro wear performance, to several million cycles using established test protocols, of head / cup components in a prosthetic hip joint made from these ceramics also demonstrates the ultra low wear characteristics. These material properties substantially eliminate polyethylene (PE) wear debris mediated implant failures by offering an optimal combination of bio-mechanical safety and reliability with ultra low wear performance.
Owner:SINTX TECH INC

Method and apparatus which reduce the erosion rate of surfaces exposed to halogen-containing plasmas

A ceramic article which is resistant to erosion by halogen-containing plasmas used in semiconductor processing. The ceramic article includes ceramic which is multi-phased, typically including two phase to three phases. The ceramic is formed from yttrium oxide at a molar concentration ranging from about 50 mole % to about 75 mole %; zirconium oxide at a molar concentration ranging from about 10 mole % to about 30 mole %; and at least one other component, selected from the group consisting of aluminum oxide, hafnium oxide, scandium oxide, neodymium oxide, niobium oxide, samarium oxide, ytterbium oxide, erbium oxide, cerium oxide, and combinations thereof, at a molar concentration ranging from about 10 mole % to about 30 mole %.
Owner:APPLIED MATERIALS INC

Layered noble metal-containing exhaust gas catalyst and its preparation

A catalyst for treating exhaust gas from an internal combustion engine includes a carrier body coated with an inner layer and an outer layer. The inner layer includes platinum deposited on a first support material and on a first oxygen storage component, and the outer layer includes platinum and rhodium deposited on a second support material and on a second oxygen storage component. The first and second support materials may be the same or different, and may be selected from the group of: silica, alumina, titania, zirconia, mixed oxides or mixtures thereof, and zirconia-rich zirconia / ceria mixed oxide. The first and second oxygen storage components may include ceria-rich ceria / zirconia mixed oxide compounds, optionally including praseodymia, yttria, neodymia, lanthana or mixtures thereof.
Owner:DMC2 DEGUSSA METALS +1

Capacitor with zirconium oxide and method for fabricating the same

ActiveUS20060097305A1Secure leakage current characteristicSecure capacitance levelTransistorSolid-state devicesOptoelectronicsDielectric structure
A capacitor with zirconium oxide and a method for fabricating the same are provided. The method includes: forming a storage node; forming a multi-layered dielectric structure on the storage node, the multi-layered dielectric structure including a zirconium oxide (ZrO2) layer and an aluminum oxide (Al2O3) layer; and forming a plate electrode on the multi-layered dielectric structure.
Owner:SK HYNIX INC

Lanthanide oxide/zirconium oxide atomic layer deposited nanolaminate gate dielectrics

The invention provides a laminated dielectric layer for semiconductor devices formed by a combination of ZrO2 and a lanthanide oxide on a semiconductor substrate and methods of making the same. In certain methods, the ZrO2 is deposited by multiple cycles of reaction sequence atomic layer deposition (RS-ALD) that includes depositing a ZrI4 precursor onto the surface of the substrate in a first pulse followed by exposure to H2O / H2O2 in a second pulse, thereby forming a thin ZrO2 layer on the surface. After depositing the ZrO2 layer, the lanthanide oxide layer is deposited by electron beam evaporation. The composite laminate zirconium oxide / lanthanide oxide dielectric layer has a relatively high dielectric constant and can be formed in layers of nanometer dimensions. It is useful for a variety of semiconductor applications, particularly for DRAM gate dielectric layers and DRAM capacitors.
Owner:MICRON TECH INC

Magnetoresistive structure having a novel specular and barrier layer combination

A method and system for providing a magnetoresistive structure is disclosed. The magnetoresistive structure includes a pinned layer, a nonmagnetic spacer layer, a free layer, a specular layer, a barrier layer, and a capping layer. The spacer layer resides between the pinned layer and the free layer. The free layer is electrically conductive and resides between the specular layer and the nonmagnetic spacer layer. The specular layer is adjacent to the free layer and includes at least one of titanium oxide, yttrium oxide, hafnium oxide, magnesium oxide, aluminum oxide, nickel oxide, iron oxide, zirconium oxide, niobium oxide, and tantalum oxide. The barrier layer resides between the specular layer and the capping layer. The barrier layer is nonmagnetic and includes a first material. The capping layer includes a second material different from the first material.
Owner:WESTERN DIGITAL TECH INC

Modular hemodialysis system

Apparatuses, systems, and methods for the performance of kidney replacement therapy having or using a dialyzer, control components, sorbent cartridge, and fluid reservoirs configured to be of a weight and size suitable to be worn or carried by an individual requiring treatment are disclosed. The system has a controlled compliance dialysis circuit, where a control pump controls the bi-directional movement of fluid across a dialysis membrane. A first sorbent cartridge is provided for use in a portable treatment module having activated carbon and zirconium oxide. The system also provides for the monitoring of an inlet and outlet conductivity of a sorbent cartridge containing urease to provide a facility to quantify or monitor the removal of urea by a detachable urea removal module.
Owner:MOZARC MEDICAL US LLC

Semiconductor device and method for manufacture thereof

A zirconium silicate layer 103 is formed on a silicon substrate 100, a zirconium oxide layer 102 is also formed on the zirconium silicate layer 103, and the zirconium oxide layer 102 is then removed, thereby forming a gate insulating film 104 made of the zirconium silicate layer 103.
Owner:PANNOVA SEMIC

Method and apparatus which reduce the erosion rate of surfaces exposed to halogen-containing plasmas

A ceramic article which is resistant to erosion by halogen-containing plasmas used in semiconductor processing. The ceramic article includes ceramic which is multi-phased, typically including two phase to three phases. The ceramic is formed from yttrium oxide at a molar concentration ranging from about 50 mole % to about 75 mole %; zirconium oxide at a molar concentration ranging from about 10 mole % to about 30 mole %; and at least one other component, selected from the group consisting of aluminum oxide, hafnium oxide, scandium oxide, neodymium oxide, niobium oxide, samarium oxide, ytterbium oxide, erbium oxide, cerium oxide, and combinations thereof, at a molar concentration ranging from about 10 mole % to about 30 mole %.
Owner:APPLIED MATERIALS INC

Prosthetic devices employing oxidized zirconium and other abrasion resistant surfaces contacting surfaces of cross-linked polyethylene

Orthopedic implants which include the components of zirconium or zirconium-based alloys having surfaces coated with oxidized zirconium or alternatively, other orthopedic implants comprising abrasion resistant surfaces contacting surfaces of cross-linked polyethylene are disclosed. Such implants provide low friction, highly wear resistant coatings especially useful in artificial joints, such as hip joints, knee joints, elbows, etc., but also useful in other implant devices as well. The implants also find use as vertebral disc prostheses.
Owner:SMITH & NEPHEW INC

Method of reducing the erosion rate of semiconductor processing apparatus exposed to halogen-containing plasmas

A ceramic article useful in semiconductor processing, which is resistant to erosion by halogen-containing plasmas. The ceramic article is formed from a combination of yttrium oxide and zirconium oxide. In a first embodiment, the ceramic article includes ceramic which is formed from yttrium oxide at a molar concentration ranging from about 90 mole % to about 70 mole %, and zirconium oxide at a molar concentration ranging from about 10 mole % to about 30 mole %. In a second embodiment, the ceramic article includes ceramic which is formed from zirconium oxide at a molar concentration ranging from about 96 mole % to about 94 mole %, and yttrium oxide at a molar concentration ranging from about 4 mole % to about 6 mole %.
Owner:APPLIED MATERIALS INC

Ionically-conductive amorphous lithium lanthanum zirconium oxide

Amorphous lithium lanthanum zirconium oxide (LLZO) is formed as an ionically-conductive electrolyte medium. The LLZO comprises by percentage of total number of atoms from about 0.1% to about 50% lithium, from about 0.1% to about 25% lanthanum, from about 0.1% to about 25% zirconium, from about 30% to about 70% oxygen and from 0.0% to about 25% carbon. At least one layer of amorphous LLZO may be formed through a sol-gel process wherein quantities of lanthanum methoxyethoxide, lithium butoxide and zirconium butoxide are dissolved in an alcohol-based solvent to form a mixture which is dispensed into a substantially planar configuration, transitioned through a gel phase, dried and cured to a substantially dry phase.
Owner:JOHNSON IP HLDG LLC

Deposition of hafnium oxide and/or zirconium oxide and fabrication of passivated electronic structures

A method of fabricating hafnium oxide and / or zirconium oxide films is provided. The methods include providing a mixture of Hf and / or Zr alkoxide dissolved, emulsified or suspended in a liquid; vaporizing at least the alkoxide and depositing the vaporized component at a temperature of greater than 400° C. The resultant film is dense, microcrystalline and is capable of self-passivation when treated in a hydrogen plasma or forming gas anneal.
Owner:GLOBALFOUNDRIES INC

Nanocomposite ceramics and process for making the same

A nanocomposite ceramic composition and method for making the same, the composition comprising a uniform dispersion of nanosize ceramic particles composed of at least one ceramic phase, interspersed and bound throughout a tough zirconia matrix phase.
Owner:RUTGERS THE STATE UNIV

Thermal barrier coating system

ActiveUS20050170200A1Avoid low surface temperaturesInferior erosion resistancePropellersMolten spray coatingThermal sprayingMetallurgy
A TBC system suitable for protecting the surface of a substrate subjected to a hostile thermal environment. The TBC system comprises a bond coat on the substrate surface, an alumina scale on the bond coat, and a multilayer TBC comprising a thermal-sprayed first ceramic layer on the alumina scale and a thermal-sprayed second ceramic layer overlying the first ceramic layer. The first ceramic layer consists essentially of partially stabilized zirconia so as to comprise the tetragonal and cubic phases of zirconia. The second ceramic layer consists essentially of fully stabilized zirconia so as to consist essentially of the cubic phase of zirconia. The second ceramic layer is also characterized by having vertical microcracks that extend through the thickness thereof. The second ceramic layer is thicker and more erosion resistant than the first ceramic layer.
Owner:GENERAL ELECTRIC CO

Method for producing carbon nanotube-dispersed composite material

The present invention has an object of providing a carbon nanotube dispersed composite material utilizing as much as possible excellent electric conductivity, heat conductive property and strength property owned by a carbon nanotube itself and taking advantage of features of ceramics having corrosion resistance and heat resistance such as zirconia and the like, and a method of producing the same; and long-chain carbon nanotubes (including also those obtained by previous discharge plasma treatment of only carbon nanotubes) are kneaded and dispersed by a ball mill, planet mill and the like together with calcinable ceramics and metal powder, further, the knead-dispersed material is treated by discharge plasma and this is integrated by sintering by discharge plasma, and carbon nanotubes can be thus dispersed in the form of network in the sintered body, and the electric conductivity property, heat conductive property and strength property of the carbon nanotube can be effectively used together with the properties of the ceramics and metal powder base material.
Owner:SUMITOMO PRECISION PROD CO LTD +1

Coated article with low-E coating including zirconium oxide and/or zirconium silicon oxynitride and methods of making same

This application relates to a coated article including at least one infrared (IR) reflecting layer of a material such as silver or the like in a low-E coating. In certain embodiments, at least one layer of the coating is of or includes zirconium oxide (e.g., ZrO2) or zirconium silicon oxynitride (e.g., ZrSiOxNy). When a layer comprising zirconium oxide or zirconium silicon oxynitride is provided as the uppermost or overcoat layer of the coated article (e.g., over a silicon nitride based layer), this results in improved chemical and heat stability in certain example embodiments. Coated articles herein may be used in the context of insulating glass (IG) window units, vehicle windows, or in other suitable applications such as monolithic window applications, laminated windows, and / or the like.
Owner:GUARDIAN GLASS LLC

Titanium alloy with oxidized zirconium for a prosthetic implant

A prosthetic device having a generally fixed member formed from a low friction material such as ultra-high molecular weight polyethylene and an articulating titanium member, which includes an articular bearing surface. The articular surface is a zirconium oxide layer formed by applying a coating of zirconium onto the titanium member and heating this in an oxygen-containing environment. This causes the zirconium to oxidize and further causes the zirconium to migrate into the titanium member forming a titanium zirconium diffusion layer, which prevents delamination.
Owner:ZIMMER INC

Self-repairing ceramic coatings

A protective coating for a substrate is disclosed having an outer component or module formed of a swellable material and an inner module formed of a plurality of layer or bilayers formed of ceramic material. The coating comprising a plurality of modules comprising a first module comprising a number (m) of bilayers comprising zirconia and alumina wherein (m) is a number greater than 1. The coating further comprises a second module disposed on the first module comprising a number (n) of bilayers comprising zirconia and titania wherein (n) is a number greater than 1. The coating further comprises a third module disposed on the second module comprising a third-module compound capable of forming a hydrate or hydroxide compound upon contact with an oxygen containing environment.
Owner:AITA CAROLYN
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products