Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

455 results about "Titanium zirconium" patented technology

In its elemental form, zirconium has a silvery white appearance that is similar to titanium. Zirconium's principal mineral is zircon (zirconium silicate ). Zirconium is commercially produced as a byproduct of titanium and tin mining and has many applications as a opacifier and a refractory material.

Corrosion protective cleaning agent for tin-plated steel

PCT No. PCT / EP96 / 01137 Sec. 371 Date Sep. 24, 1997 Sec. 102(e) Date Sep. 24, 1997 PCT Filed Mar. 15, 1996 PCT Pub. No. WO96 / 30558 PCT Pub. Date Oct. 3, 1996The invention concerns an aqueous corrosion-protective cleaning solution for tin-plated steel, in particular for tin-plated steel cans, the solution containing complex fluorides of the elements boron, titanium, zirconium, and hafnium; non-ionic surfactants; and corrosion inhibitors and having a pH within the range from 3 to 6. The invention also concerns an aqueous concentrate for preparing the solution by dilution with water and a method of cleaning tin-plated cans using the solution.
Owner:HENKEL KGAA

High-nickel positive active material of surface-modified lithium ion battery and preparation method of positive active material

The invention discloses a high-nickel positive active material of a surface-modified lithium ion battery. A matrix substance is the high-nickel positive active material LiNixCoyMzO2, the surface of the matrix substance is uniformly coated by a lithium-ion conductor compound which comprises at least one of LiAlO2, Li4Ti5O2 and Li2ZrO3; the content of the total impurity lithium in the positive active material is below 0.085%. The invention also discloses a preparation method of the positive active material. The preparation method comprises the following steps of: firstly mixing the matrix substance with an organic solution containing aluminum, an organic solution containing titanium or an organic suspension liquid containing aluminum/titanium/zirconium, drying, calcining the dried mixture, finally generating the lithium-ion conductor compound on the surface of the matrix substance, namely the high-nickel positive active material of the surface-modified lithium ion battery. The high-nickel positive active material disclosed by the invention has the advantages that the content of alkali substances is obviously reduced, the processing performance of the material is improved, and the electrochemical stability is improved.
Owner:HUNAN CHANGYUAN LICO CO LTD

Inorganic/organic hybrid oligomer and nano hybrid polymer for use in optical devices and displays, and process for preparing the same

The present invention provides an inorganic / organic hybrid oligomer having silica or a complex of silica and a metal oxide present inside thereof and functional organic groups outside thereof, obtained by reacting: (i) Compound 1 and Compound 2; (ii) Compound 1 and Compound 3; or (iii) Compound 2 and Compound 3 with Compound 1; wherein Compound 1 is R1R2Si(OH)2, Compound 2 is (R3)a(R4)bM(OR5)(c-a-b), and Compound 3 is R6OH or R6COOH; a and b are each an integer between 0 and 3; c is an integer between 3 and 6; M is silicon, or a metal such as aluminum, titanium, zirconium, etc. that can be coordinated with ligands; provided that in the cases of (i), (ii) and (iii) at least one of R1, R2, R3, R4 and R6 has a polymerizable functional group; an inorganic / organic nano hybrid polymer prepared therefrom and a process for preparing the same.
Owner:KOREA ADVANCED INST OF SCI & TECH

Steel for steam-temperature ultra-supercritical thermal power unit and preparation method thereof

ActiveCN103045962ACeriumCobalt
The invention relates to steel for a steam-temperature ultra-supercritical thermal power unit and a preparation method thereof, belonging to the technical field of heat resistant steel. The steel comprises the following chemical compositions by weight percentage: 0.06-0.10 percent of carbon, 0.1-0.5 percent of silicon, 0.2-0.8 percent of manganese, not more than 0.004 percent of phosphorous, not more than 0.002 percent of sulfur, 8.0-9.5 percent of chromium, 2.5-3.5 percent of tungsten, 2.5-3.5 percent of cobalt, 0.03-0.07 percent of niobium, 0.10-0.30 percent of vanadium, 0.80-1.20 percent of copper, 0.006-0.010 percent of nitrogen, 0.010-0.016 percent of boron, 0.01-0.04 percent of rare-earth cerium, not more than 0.01 percent of nickel, not more than 0.005 percent of aluminum, not more than 0.01 percent of titanium, not more than 0.01 percent of zirconium and the balance of ferrum and inevitable impurity elements. The steel has the advantages that the steel can be used for preparing G115 steel of 650 DEG C of steam-parameter ultra-supercritical thermal power unit and a large-diameter boiler tube thereof, and the room-temperature mechanical property, the impact property, the high-temperature mechanical property and the permanence property of the steel are much higher than those of P92 steel in the Gb5310 and ASME standard.
Owner:CENT IRON & STEEL RES INST

Preparation method of titanium zirconium base alloy

InactiveCN103602840AHigh strengthElongation at failure retentionElectric arc furnaceTitanium zirconium
The invention relates to a preparation method of a titanium zirconium base alloy. The titanium zirconium base alloy comprises the following components in percentage by weight: 41-62% of Ti, 30-51% of Zr, 5% of Al and 3% of V. The preparation method comprises the following steps: adding the raw materials into a nonconsumable electric-arc furnace and melting the raw materials to obtain an alloy ingot; after coating a high-temperature antioxidant on the surface of the alloy ingot, heating and insulating in the furnace, and cogging and forging to obtain a platy alloy; after removing the antioxidant on the surface, heating in a thermal treatment furnace at 850-870 DEG C, insulating for 1 hour and performing water quenching and cooling; cutting the alloy plate to thin plates which are 3-4mm long for rolling and forming at room temperature, wherein the rolling strain rate is 2.2-3.1<-s> and the total deformation is over 80%; then, annealing, wherein the vacuum degree is 10<-4>-10<-5>Pa, the temperature is 740-760 DEG C; insulating for 1 hour; performing air cooling to room temperature. According to the preparation method provided by the invention, the titanium zirconium base alloy with the microstructure which is a special duplex microstructure is obtained, and the alloy strength is effectively improved while the plasticity of the alloy is maintained.
Owner:YANSHAN UNIV

Method for manufacturing polycrystalline silicon, and polycrystalline silicon for solar cells manufactured by the method

Provided is a method for the preparation of polycrystalline silicon in which, in conducting preparation of polycrystalline silicon by the Siemens method or by the monosilane method, no outer heating means is necessitated for the core member (seed rod), onto which polycrystalline silicon is deposited, from the initial stage of heating, the deposition rate is high and the core member seed rod can be used repeatedly.The method for deposition of high-purity polycrystalline silicon, at a high temperature, onto a white-heated seed rod in a closed reaction furnace by pyrolysis or hydrogen reduction of a starting silane gas supplied thereto, is characterized in that the seed rod is a member made from an alloy having a recrystallization temperature of 1200° C. or higher. It is preferable that the alloy member is of an alloy of Re—W, W—Ta, Zr—Nb, titanium-zirconium, or a carbon-added molybdenum (TZM) in the form of a wire member having a diameter of at least 0.5 mm, a plate member having a thickness of at least 1 mm or a prismatic member, or a tubular member having a diameter of at least 1 mm, wall thickness of at least 0.2 mm with an inner diameter not exceeding 5 mm, that the plate member, wire member, prismatic member or tubular member has a tapered form and further that the tubular member is a tapered duplex tube.
Owner:SHIN ETSU FILM +1

Iminooxadiazinedione polyisocyanates

The present invention relates to a process for producing polyisocyanates comprising reacting an isocyanate component in the presence of a mono- or multinuclear complex of titanium, zirconium and / or hafnium as catalyst to give polyisocyanates having a content of iminooxadiazinedione groups of ≧20 mol % based on the total amount of isocyanurate and iminooxadiazinedione groups. The present invention also provides polyisocyanates obtainable by the process according to the invention and both polyurethanes and polyureas obtainable by reacting the polyisocyanates with at least one hydroxy-functional or amino-functional component respectively.
Owner:COVESTRO DEUTSCHLAND AG

Method for preparing fine-grain high-density TZM (Titanium-Zirconium-Molybdenum Allo) alloy

The invention discloses a method for preparing a fine-grain high-density TZM (Titanium-Zirconium-Molybdenum Allo) alloy. The method disclosed by the invention comprises the following steps of: with pure molybdenum powder, ZrH2 powder, La2O3 powder and graphite powder as raw materials, mixing the raw materials, and carrying out ball milling, press molding, presintering and high-temperature sintering to obtain the TZM alloy. The TZM alloy prepared by using the method disclosed by the invention has the characteristics of fine crystal grains, distribution uniformity, low porosity, high compactness, simple preparation process and strong operability and controllability and has the most remarkable advantages that: on the basis of the traditional ZTM alloy preparation method, rare earth oxide La2O3 is solid-solid doped in the alloy powders, a mode of combining mixing and ball-milling of the alloy powders and a mode of sectional sintering during high-temperature sintering are adopted, crystal grains are fined, the alloy density is remarkably improved, the sintering temperature of the TZM alloy is reduced to 1800-2000 DEG C from 2100-2300 DEG C in the traditional method, therefore energy resources are saved and requirements of an enterprise on the fine-grain TZM alloy material with high density can be met.
Owner:XI'AN UNIVERSITY OF ARCHITECTURE AND TECHNOLOGY

Preparing method and application of high purity and density spherical titanium zirconium alloy powder

The invention relates to a preparing method and application of high purity and density spherical titanium zirconium alloy powder, and belongs to the technical field of alloy powder material preparation. The preparing method comprises the following steps that titanium sponge and zirconium sponge are used as raw materials, and titanium zirconium alloy ingots are prepared by using a vacuum induction melting technology; uniform vacuum annealing treatment is conducted on the titanium zirconium alloy ingots, and the ingots of uniform elements are obtained; the titanium zirconium alloy ingots are crushed into particles, hydrotreating is conducted, and hydrogen absorption titanium zirconium alloy powder is obtained; the hydrogen absorption titanium zirconium alloy powder is ball-milled under atmosphere protecting, and the hydrogen absorption titanium zirconium alloy powder of small particle sizes and irregular forms is obtained; the hydrogen absorption titanium zirconium alloy powder of irregular forms are sent to an inductive plasma torch, and the hydrogen absorption titanium zirconium alloy powder quickly absorbs heat, is dissolved and dehydrogenized; and in the dehydrogenizing process, the hydrogen absorption titanium zirconium alloy powder is split and shattered and then fused and nodulized under the high temperature, and finally, the high purity and density spherical titanium zirconium alloy powder is obtained by cooling. The titanium zirconium alloy powder prepared through the method has the advantages of being high in purity, small in particle size, good in uniformity, high in degree of sphericity and good in flowability.
Owner:云航时代(重庆)科技有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products