Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

501results about How to "Good capacity retention" patented technology

Method for preparing modified spinelle manganic acid lithium material and lithium secondary battery

The invention discloses a modified spinel lithium manganate material used in anode material of lithium secondary battery, the lithium manganate is a kind of doped lithium manganate LiaMn2-bXbO4 with other metallic element X, wherein X is at least one element of chroumium, gallium, magnesium, titanium, cuprum, zincum, 0.97 <= a <= 1.07, 0 <= b <= 0.1; and the surface of the said doped lithium manganate LiaMn2-bXbO4 is provided with a coat which contains at least one kind of boron-lithium composite oxides, cobalt-lithium composite oxides, vanadium-lithium composite oxides or carbon layer. The invention also discloses a preparing method for the said material and the lithium secondary battery using the said material as anode material. The invention provided modified spinel lithium manganate material has relative good high rate deep discharge capacity in normal temperature or high temperature, in mean time, the preparing method is easy for control and operation and industrialisation, and production cost thereof is low.
Owner:SHENZHEN BAK POWER BATTERY CO LTD

Cyclic sulfate compound, non-aqueous electrolyte solution containing same, and lithium secondary battery

A non-aqueous electrolyte solution containing a cyclic sulfate compound represented by formula (I) is provided, wherein in formula (I), R1 represents a group represented by formula (II) or a group represented by formula (III); R2 represents a hydrogen atom, an alkyl group having from 1 to 6 carbon atoms, a group represented by formula (II), or a group represented by formula (III); and in formula (II), R3 represents a halogen atom, an alkyl group having from 1 to 6 carbon atoms, a halogenated alkyl group having from 1 to 6 carbon atoms, an alkoxy group having from 1 to 6 carbon atoms, or a group represented by formula (IV).
Owner:MITSUI CHEM INC

Dopamine-modifying ceramic composite separator and application thereof

The invention discloses a dopamine-modifying ceramic composite separator and an application thereof. The dopamine-modifying ceramic composite separator comprises an organic separator base material and a ceramic layer arranged on the surface of the separator base material in a coated mode, wherein the thickness of the ceramic layer ranges from 0.1 micrometer to 20 micrometers. The dopamine-modifying ceramic composite separator further comprises dopamine polymers grown on the surfaces and the interiors of the separator base material and the ceramic layer in an in-situ mode. The dopamine polymers are copolymers of polydopamine or 5-hydroxy- polydopamine or polydopamine acrylamide and polydopamine acrylamide. The particle size of inorganic powder in the ceramic layer ranges from 5 nanometers to 10 micrometers. The molecular weight of materials of the organic separator base material ranges from 1,000 to 100,000,000. According to the dopamine-modifying ceramic composite separator, due to the dopamine polymers, potential safety hazards caused by powder falling and liquid leaking of the ceramic layer can be effectively reduced, and the physical performance and the electrochemical performance of the separator are effectively improved; meanwhile, due to the dopamine polymers, the stability of an interface between separator electrolysis and an electrode can be improved, lithium dendrites can be effectively suppressed through the improvement of the stability of the interface, and therefore the capacity holding capacity of a battery can be easily improved.
Owner:XIAMEN UNIV

High voltage electrolyte considering high and low temperature performance and lithium ion battery using the electrolyte

The invention discloses high voltage electrolyte considering high and low temperature performance and a lithium ion battery using the electrolyte. The high voltage electrolyte comprises a non-aqueous organic solvent, an electrolyte lithium salt, an ether nitrile compound and a low impedance additive, wherein the non-aqueous organic solvent comprises a carbonate solvent and a linear carboxylic acid ester solvent with a wide liquid range; the electrolyte lithium salt is a combination of lithium hexafluorophate and lithium triflurosulfimide according to a molar ratio of 0.01-0.5; and the low impedance additive is a cyclic sulfate compound. The linear carboxylic acid ester solvent for perfecting the electrode/ electrolyte interface is contained in the high voltage electrolyte, by means of the optimized combination of the ether nitrile compound, the lithium triflurosulfimide and the cyclic sulfate compound and other additives, a high voltage battery can be guaranteed to have excellent circulation performance, and meanwhile, the excellent high and low temperature performance of the high voltage battery of storage for 18 h in a full charge state at 85 DEG C and no lithium separation in the full charge state at 0 DEG C is considered.
Owner:GUANGZHOU TINCI MATERIALS TECH

Lithium ion battery anode material and preparation method thereof

The invention discloses a preparation method of a lithium ion battery anode material. The method is characterized in that the outer surface of the existing lithium ion battery anode material is sequentially coated with an aluminum oxide layer and a carbon layer, wherein the coating condition is liquid-phase coating, in the coating process of the aluminum oxide, the addition sequence of the existing lithium ion battery anode material and aluminum salt is adjusted, and the coating substance organic aluminum salt is added under the continuously stirring condition, so that a hydrolytic product is uniformly adsorbed onto the surface of an active substance. The carbon coating is carried out through a spray drying and rapid sintering way in the inert gas atmosphere, so that the problems that the metal is reduced due to the high-temperature carbon coating and the organic carbon source is difficultly carbonized in low temperature can be avoided. The invention also discloses a lithium ion battery anode material prepared through the method. The energy density and power density of the battery can be remarkably improved, and the cycling performance, the capacity retention rate and the safety performance of the battery can be improved.
Owner:EVE ENERGY CO LTD

Mixed matrix type cation exchange membrane and preparation method thereof

The invention relates to a mixed matrix type cation exchange membrane and a preparation method thereof. The cation exchange membrane takes a sulfonated modified polymer material as a substrate and isdoped with Schiff base type covalent organic framework materials loaded with different functional groups. The preparation method comprises the following steps of: sequentially performing monomer preparation and polymerization of a covalent organic framework material, sulfonation modification of a polymer, uniform mixing of the covalent organic framework material and a sulfonated polymer, and flow-spreading film formation; and finally, performing acid treatment to obtain the cation exchange membrane. The covalent organic framework material can effectively improve the vanadium resistance of themembrane based on the rigid porous structure; the organic porous structure of the covalent organic framework and the different functional modifications can partially compensate the loss of membrane proton conductivity caused by the introduction of particles; the rigid framework can obviously inhibit the swelling in the membrane and can improve the tensile strength of the membrane; COFs is composedof organic structures and can promote compatibility between sulfonated polymers and covalent organic framework materials; and moreover, the polymer as the substrate can improve the film forming performance of the covalent organic framework material, so that the covalent organic framework material has the better mechanical strength.
Owner:DALIAN UNIV OF TECH

Polyolefin multilayer micro porous diaphragm for lithium ion battery and preparation method of polyolefin multilayer micro porous diaphragm

ActiveCN103531735AWith ion acceleration functionExcellent Adhesive FunctionCell component detailsPolyolefinHigh diaphragm
The invention relates to a polyolefin multilayer micro porous diaphragm for a lithium ion battery and a preparation method of the polyolefin multilayer micro porous diaphragm. The polyolefin multilayer micro porous diaphragm comprises a polyethylene micro porous layer, wherein an ion acceleration layer is arranged on each of the upper surface and the lower surface of the polyethylene micro porous layer, and a polypropylene micro porous layer is arranged on the outer surface of each ion acceleration layer. According to the polyolefin multilayer micro porous diaphragm, due to the adoption of a five-layer structure, a low hole closing temperature and a high diaphragm breaking temperature of the diaphragm can be provided, thus a safety window of the diaphragm is increased and the good safety performance is provided; and meanwhile, the ion acceleration layers provide low resistance, high electron conduction rate and good solution absorption performance and solution maintaining performance of the diaphragm, thus the charge-discharge power and the cycle service life of the lithium ion battery can be improved; and the ion acceleration layers have micro porous net-shaped structures and have excellent lyophilic performance and adhering performance, the ion transmission performance of the diaphragm is improved when all layers of the multilayer micro porous diaphragm are well compounded, and good gas permeability is kept.
Owner:河南惠强新能源材料科技股份有限公司

Anode material of lithium-sulfur battery, lithium-sulfur battery and method for preparing anode material

The invention relates to an anode material of a lithium-sulfur battery, the lithium-sulfur battery and a method for preparing the anode material, and belongs to the field of battery materials. The center of the anode material is made of a functionalized carbon nano-material, the middle interlayer is made from sulfur, and the outer layer adopts a polydopamine film, wherein the functionalization method is hydroxylation or carboxylation. The preparation method comprises the following steps: dissolving the carbon nano-material in an alkaline or acid liquid to obtain the functionalized carbon nano-material; adding the functionalized carbon nano-material in a sulfur water solution, stirring, dropwise adding diluted acid to the solution, and obtaining the functionalized carbon nano-material coated with sulfur on the outer side; adding the functionalized carbon nano-material coated with sulfur on the outer side in a tris(hydroxymethyl) methane buffer solution, and performing a polymerization reaction to a dopamine hydrochloride solution, so as to obtain the anode material. The invention further relates to the lithium-sulfur battery using the anode material. The battery can further comprise a polyethylene diaphragm modified by polydopamine. The anode material can inhibit the shuttle flying effect and the structural damage caused by volume expansion; and the lithium-sulfur battery is good in cycle performance and capacity retention ratio.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY

Polymer-modified ceramic-coated composite separator and application thereof

The invention discloses a polymer-modified ceramic-coated composite separator and an application thereof. The polymer-modified ceramic-coated composite separator comprises an organic separator base material, a ceramic layer and polymers, wherein the ceramic layer coats the surface of the separator base material and is 0.1-20 microns in thickness; the polymers grow in situ on the surfaces of the separator base material and the ceramic layer and inside the separator base material and the ceramic layer; the polymers are polymethyl methacrylate, polyvinylidene fluoride-perfluoropropylene, polyacrylonitrile, polyimide, polyether amide, or polyethylene oxide and the like ; the particle size of inorganic powder in the ceramic layer is 5nm to 10 microns; and the molecular weight of the material of the organic separator base material is 1,000-100,000,000. According to the polymer-modified ceramic-coated composite separator disclosed by the invention, due to the presence of the polymers, and the potential safety hazards caused by dusting and liquid leakage of the ceramic layer can be effectively reduced; the physical property and the electrochemical properties of the separator are effectively improved; meanwhile, due to the presence of the polymers, the interface stability between a separator electrolyte and an electrode can also be improved; and generation of lithium dendrites can be effectively suppressed by improvement of the interface stability. Therefore, improvement of the capacity retention ability of a battery is facilitated.
Owner:XIAMEN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products