Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1930 results about "Hydroxylation" patented technology

Hydroxylation is a chemical process that introduces a hydroxyl group (-OH) into an organic compound. In biochemistry, hydroxylation reactions are often facilitated by enzymes called hydroxylases. Hydroxylation is the first step in the oxidative degradation of organic compounds in air. It is extremely important in detoxification since hydroxylation converts lipophilic compounds into water-soluble (hydrophilic) products that are more readily removed by the kidneys or liver and excreted. Some drugs (for example, steroids) are activated or deactivated by hydroxylation.

Nano water paint having nano particles surfaced with self-assembly monolayers

InactiveUS20060063873A1Improved and enhanced paint propertySpecial tyresCoatingsHigh densityNanoparticle
A process for preparing nano water paint comprising the steps of: A. Modifying the chemical property on the surface of nano particles by hydroxylation for forming hydroxyl groups at high density on the surface of the nano particles; B. Forming self-assembly monolayers of low surface energy compounds on the nano particles by substituting the self-assembly monolayers for the hydroxyl groups on the nano particles for disintegrating the clusters of nano particles and for forming the self-assembly monolayers homogeneously on the surface of the nano particles; and C. Blending or mixing the nano particles having self-assembly monolayers formed thereon with organic paint to form nano water paint.
Owner:ARCHITECTURE & BUILDING RES INST MINIST OF INTERIOR TAIWAN

Compositions containing a hydroxylated diphenylmethane compound, methods of use

The invention relates to a composition containing, in a physiologically acceptable medium, (a) at least one hydroxylated diphenylmethane compound of formula (I)where formula variables are defined in the body of the application and claims and (b) at least one ingredient promoting the solubilization, stabilization and / or activity of the hydroxylated diphenylmethane compound of formula (I). The invention also relates to a cosmetic method for caring for or making up the skin, comprising the topical application of such a composition to the skin.
Owner:LOREAL SA

Substrate with surface-enhanced Raman scattering activity and preparation method thereof

The invention provides a substrate with surface-enhanced Raman scattering activity and a preparation method thereof, and the method comprises the following steps: the glass base surface is subjected to hydroxylation and amination treatment; catalytic hydrolysis is carried out on ethyl orthosilicate under the alkali condition by taking alcohol as a solvent; Silica microspheres with even size and smooth surface are prepared by an oscillation method; silane coupling agent of which the tail end is provided with amino is assembled on the surface of the silica microspheres; silver sol obtained by reducing sodium borohydride to silver nitrate through oscillation is assembled on the surface of SiO2-NH2NPs, and is diffused in water again after centrifugal separation and washing by distillated water; self assembly is carried out on the silver sol after being placed in SiO2@Ag NPs dispersion for 6-12h; the SERS active substrate is obtained after taking out from water and drying. In the SERS active substrate of the invention, the active particles and the substrate are combined firmly, thus being applicable to detecting unimolecular Raman signals in aqueous solution; the substrate can be used for SERS detection repeatedly, thus improving repeated utilization ratio of the substrate.
Owner:NORTHWEST NORMAL UNIVERSITY

Biological production method of tanshinol

The invention discloses a biological production method of tanshinol, which comprises the following steps: synthesizing p-hydroxyphenylpyruvic acid into 3,4-dihydroxyphenylpyruvic acid under the catalytic action of a p-hydroxyphenylacetic acid meta-position hydroxylation enzyme, and then, synthesizing to obtain the tanshinol under the catalytic action of a D-lactate dehydrogenase; or synthesizing p-hydroxyphenylpyruvic acid into p-hydroxyphenyllactic acid under the catalytic action of a D-lactate dehydrogenase, and then, synthesizing to obtain the tanshinol under the catalytic action of a p-hydroxyphenylacetic acid meta-position hydroxylation enzyme. According to the invention, gene engineering glutamic acid corynebacteria and Escherichia coli are used to produce the tanshinol through fermentation, and the tanshinol can be synthesized without adding a substrate, thereby realizing de novo synthesis of the tanshinol and solving the problem on the source of the tanshinol; and meanwhile, the production cost is lowered to the greatest extent. Thus, the biological production method is beneficial to industrial production.
Owner:TIANJIN UNIV

Titanium-silicon molecular sieve/tripolite composite catalyst and preparation

The invention discloses a Ti-Si molecular sieve/diatomite composite catalyst and a preparation method thereof, which is characterized in that: the catalyst is formed by compounding Ti-Si molecular sieve (such as TS-1 and TS-2) and diatomite with particular chemical property which is treated in a particular way, and is modified chemically by transition metal oxide after molding; the preparation method comprises the following steps: (1) after being treated with acid solution and alkaline solution, the diatomite needs heat treatment in high temperature to obtain particular chemical property; (2) the molding Ti-Si molecular sieve/diatomite composite catalyst is modified chemically by transition metal oxide (such as lanthanum and nickel). The composite catalyst can be used as the catalyst of selective oxidation reaction of the organic compound (such as the catalytic hydroxylation reaction of phenol) on fixed bed liquidoid, which uses hydrogen peroxide as the oxidant. The Ti-Si molecular sieve/diatomite composite catalyst has the advantages of high catalytic activity, high stability, long service life and easy separation, recovery and regeneration of the catalyst. When using the catalyst in the hydroxylation reaction of phenol of fixed bed liquidoid, under the reaction conditions of 84 DEG C, atmospheric pressure and 8.46h<-1> space velocity, the conversion rate of phenol is greater than 33%, the selectivity of diphenol reaches 99.9%, and the effective use rate of hydrogen peroxide is greater than 85%.
Owner:EAST CHINA UNIV OF SCI & TECH

Surface chemical plating treatment process for hollow glass microsphere, plated metal hollow glass microsphere and application thereof

ActiveCN102311233AEasy PlatingCoarse wellChemical platingMicrosphere
The invention relates to the technical field of a composite material with a core shell structure and provides a surface chemical plating treatment process for hollow glass microspheres. The surface chemical plating treatment process comprises the following steps: carrying out alkaline wash and hydrogen peroxide wash before plating to coarsen and hydroxylate the surface of the hollow glass microsphere; and carrying out chemical plating on the processed hollow glass microsphere to obtain a metal-plated hollow glass microsphere. In the method, complex preprocessing technology, such as sensitization, activation and the like in the existing method, can be simplified, and the use of expensive stannous chloride and palladium chloride which are not environmentally-friendly is avoided. Compared with the existing hot alkaline liquor processing method, the process provided by the invention has the advantages that possible microsphere fracture caused by the long-time soaking in the alkaline liquor can be avoided, and the surface hydroxylation efficiency of the hollow glass microsphere can be greatly increased by using hydrogen peroxide. The hollow glass microsphere processed with the method is easy to plate. The obtained metal-plated hollow glass microsphere has the advantages of a complete metal layer, light weight, good electrical conductivity and the like. When the obtained metal-plated hollow glass is used as a filler, material density can be lowered, cost is lowered, mechanical property is enhanced, and the plated metal hollow glass microsphere is applied to the aspects of staticelectricity coating, electromagnetic wave interference coating, wave adsorption coating and the like.
Owner:TECHNICAL INST OF PHYSICS & CHEMISTRY - CHINESE ACAD OF SCI

Composition for cytocompatible, injectable, self-gelling polysaccharide solutions for encapsulating and delivering live cells or biologically active factors

The present invention provides compositions and methods for tissue repair using a cytocompatible self-gelling cross-linked hydrogel. The composition comprises a biocompatible mixture of chitosan, bifunctional dialdehyde, and hydroxylated polymer, which can be used to immobilize or encapsulate viable cells, or bioactive substances. The method includes the process of mixing bioactive substances, live cells, and / or extracellular matrix components with a cross-linking solution comprising a bifunctional aldehyde-treated hydroxylated polymer such as hydroxyethyl cellulose. The cross-linking solution is then mixed homogenously with a neutral isotonic chitosan solution. The chitosan becomes cross-linked by the bifunctional aldehyde, while the cells are protected from potentially nocive effects of the aldehyde cross-linker by the hydroxylated polymer. The injectable solution retains cell viability and bioactivity, and immobilizes cells at the site of injection or delivery. Depending on the particular application, mixtures of chitosan and bifunctional dialdehyde may be employed. The injectable solution also liberates bioactive substances with controlled release kinetics from the site of injection.
Owner:PIRAMAL HEALTHCARE CANADA

Preparation method of copper-clad electromagnetic wave shielding fabric

The invention belongs to the technical field of electromagnetic wave shielding materials, and relates to a preparation method for copper-clad electromagnetic wave shielding fabric. The method comprises the following steps of: carrying out hydroxylation, sulfhydrylation and then chemical copper plating on the surface of polyester fabric and obtaining the electromagnetic wave shielding fabric; after the prepared electromagnetic wave shielding fabric is washed by an ultrasonic washing machine, the weight of the fabric is not changed, which shows that the copper plated on the surface and the fabric have good adhesivity, namely the fabric has strong washability; the washed fabric is in the range of 0.01MHz to 18GHz; and the efficiency of the electromagnetic wave shielding is larger than 54dB, namely the rate of radiation protection of the electromagnetic wave is larger than 99.999 percent. The fabric can be widely used for electromagnetic wave radiation-proof clothes and electromagnetic wave shielding of special departments including aviation, aerospace, military industry and communication, etc.
Owner:TAICANG BIQI NEW MATERIAL RES & DEV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products