Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

8183results about "Fibre types" patented technology

Metal organic framework/polymer nanofiber composite membrane material and preparation method thereof

InactiveCN107022899AUniform, stable and dense growthStable growthFibre typesNon-woven fabricsMetal-organic frameworkFiber
The invention provides a metal organic framework / polymer nanofiber composite membrane material and a preparation method thereof. The metal organic framework / polymer nanofiber composite membrane material is characterized by being prepared from a polymer nanofiber membrane; a metal organic framework layer grows on the surfaces of nanofibers in the polymer nanofiber membrane. The preparation method is characterized by comprising the steps of firstly preparing the polymer nanofiber membrane, hydrolyzing the polymer nanofiber membrane, and putting the hydrolyzed polymer nanofiber membrane into a precursor solution of a metal organic framework to enable the metal organic framework to grow on the polymer nanofiber membrane so as to obtain the metal organic framework / polymer nanofiber composite membrane material. The metal organic framework / polymer nanofiber composite membrane material has great application potential in the fields such as gas adsorption and separation, catalysts, sensors and electrode materials.
Owner:DONGHUA UNIV

Aqueous polyurethane superfine fiber synthetic leather and preparation method thereof

The invention relates to aqueous polyurethane superfine fiber synthetic leather and a preparation method thereof. The preparation method comprises the following steps of: firstly, adding the following components according to parts by weight, i.e. 2-5 parts of foaming agents, 50-200 parts of water, 2-3 parts of foam stabilizers and 0-3 parts of waterborne colorants, into 100 parts of aqueous anionic polyurethane dipping sizing agents, and stirring the components and the sizing agents uniformly at high speed by using a blender so as to prepare a sizing agent; secondly, dipping non-woven fabricsin the sizing agent, scrapping the surface of the fabrics and keeping partial cells; thirdly, solidifying aqueous polyurethane on the dipped non-woven fabrics through aqueous coagulating liquid so asto form cells; fourthly, carrying out water scrubbing after aqueous polyurethane resin is completely solidified, and drying the aqueous polyurethane resin by an infrared drying oven so as to obtain base cloth; fifthly, treating the dried base cloth through an alkali reducing process; sixthly, treating the base cloth treated through the alkali reducing process through an postprocessing process; and seventhly, preparing the obtained base cloth into the synthetic leather. The aqueous polyurethane superfine fiber synthetic leather is prepared by the method.
Owner:HUADA CHEM GRP CO LTD

Moisture absorption perspiration-discharging dressing agent and its manufacturing technique and application

The invention discloses the formula, the production process and the application of moisture absorbent and sweat conductive comfortable finishing agent which is used for modifying the polyester fiber to enable the polyester fiber to have moisture absorbent and sweat conductive capabilities. The formula of the moisture absorbent and sweat conductive comfortable finishing agent contains: polyethylene glycol, ethylene glycol, polyether and dimethyl terephthalate. The two-step continuous production process is adopted: in the first step of esterifying, polyethylene glycol, ethylene glycol, polyether and dimethyl terephthalate are put into a reaction vessel for esterification under the action of catalysts; and in the second step that the material produced after the esterification is transported to a polymerization kettle for polymerization under the actions of high temperature, vacuum, and catalysts, in order to generate polyester-polyether copolymer with high molecular weight to be 30000-50000, namely, the moisture absorbent and sweat conductive comfortable finishing agent. The moisture absorbent and sweat conductive comfortable finishing agent can be directly used or be used after being mixed with substances such as amino silicone oil and so on, and carry out chemical modification on the polyester fiber.
Owner:DUPLUS CHEM OF ZHANGJIAGANG CITY

Electroconductive fibers with carbon nanotubes deposited thereon, electroconductive threads, fiber structure, and process for producing same

Disclosed is an electroconductive fiber comprising synthetic fibers and an electroconductive layer covering the surface of the synthetic fibers and containing carbon nanotubes. Not less than 60% (particularly not less than 90%) of the total surface of the synthetic fibers is covered with the electroconductive layer, and the electric resistance of the electroconductive fiber is in the range of 1*10<-2> to 1*10<10> Omega / cm, and the standard deviation of the logarithm of the electric resistance is less than 1.0. The thickness of the electroconductive layer is in the range of 0.1 to 5 micrometers, and the amount of the carbon nanotubes may be 0.1 to 50 parts by mass based on 100 parts by mass of the synthetic fiber. The electroconductive fiber may contain a binder. The electroconductive fiber may be produced by immersing the synthetic fibers in a dispersion while applying vibration to the synthetic fibers to deposit an electroconductive layer on the surface of the synthetic fibers. In the electroconductive fiber, the carbon nanotubes are deposited evenly and strongly onto substantially the whole area of the surface of the fibers, and, thus, the electroconductive fiber is electroconductive and flexible.
Owner:HOKKAIDO UNIVERSITY +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products