Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1716results about How to "Facilitate deposition" patented technology

Systems for Atomic Layer Deposition of Oxides Using Krypton as an Ion Generating Feeding Gas

An atomic layer deposition system and method utilizing radicals generated from a high-density mixed plasma for deposition is disclosed. A high-quality oxide or oxynitride can be deposited by exposing a substrate to a first precursor which is adsorbed onto the substrate during a first phase of one deposition cycle. After purging the deposition chamber, the substrate is exposed to a second precursor which includes oxygen radicals and krypton ions formed from the high-density mixed plasma. The ions and radicals are formed by introducing a radical generating feed gas (e.g., O2) and an ion generating feed gas into a plasma chamber and exciting the gases to form the high-density mixed plasma. The radicals and ions are then introduced to the substrate where they react with the first precursor to deposit a layer of the desired film. Krypton is preferably used as the ion generating feed gas because the metastable states of krypton lead to an efficient dissociation of oxygen into oxygen radicals when compared with other inert gases.
Owner:SANDISK TECH LLC

Surface preparation prior to deposition on germanium

Methods are provided for treating germanium surfaces in preparation for subsequent deposition, particularly gate dielectric deposition by atomic layer deposition (ALD). Prior to depositing, the germanium surface is treated with plasma products or thermally reacted with vapor reactants. Examples of surface treatments leave oxygen bridges, nitrogen bridges, —OH, —NH and / or —NH2 terminations that more readily adsorb ALD reactants. The surface treatments avoid deep penetration of the reactants into the germanium bulk but improve nucleation.
Owner:ASM IP HLDG BV

Atomic Layer Deposition of Oxides Using Krypton as an Ion Generating Feeding Gas

An atomic layer deposition system and method utilizing radicals generated from a high-density mixed plasma for deposition is disclosed. A high-quality oxide or oxynitride can be deposited by exposing a substrate to a first precursor which is adsorbed onto the substrate during a first phase of one deposition cycle. After purging the deposition chamber, the substrate is exposed to a second precursor which includes oxygen radicals and krypton ions formed from the high-density mixed plasma. The ions and radicals are formed by introducing a radical generating feed gas (e.g., O2) and an ion generating feed gas into a plasma chamber and exciting the gases to form the high-density mixed plasma. The radicals and ions are then introduced to the substrate where they react with the first precursor to deposit a layer of the desired film. Krypton is preferably used as the ion generating feed gas because the metastable states of krypton lead to an efficient dissociation of oxygen into oxygen radicals when compared with other inert gases.
Owner:SANDISK TECH LLC

Flash Heating in Atomic Layer Deposition

System and methods for flash heating of materials deposited using atomic layer deposition techniques are disclosed. By flash heating the surface of the deposited material after each or every few deposition cycles, contaminants such as un-reacted precursors and byproducts can be released from the deposited material. A higher quality material is deposited by reducing the incorporation of impurities. A flash heating source is capable of quickly raising the temperature of the surface of a deposited material without substantially raising the temperature of the bulk of the substrate on which the material is being deposited. Because the temperature of the bulk of the substrate is not significantly raised, the bulk acts like a heat sink to aid in cooling the surface after flash heating. In this manner, processing times are not significantly increased in order to allow the surface temperature to reach a suitably low temperature for deposition.
Owner:SANDISK TECH LLC

Selective refractory metal and nitride capping

A method for creating a refractory metal and refractory metal nitride cap effective for reducing copper electromigration and copper diffusion is described. The method includes depositing a refractory metal nucleation layer and nitriding at least the upper portion of the refractory metal layer to form a refractory metal nitride. Methods to reduce and clean the copper lines before refractory metal deposition are also described. Methods to form a thicker refractory metal layer using bulk deposition are also described.
Owner:NOVELLUS SYSTEMS

Film deposition method

The invention discloses a film deposition method which comprises the following steps: placing a first electrode plate used as an anode and a second electrode plate used as a cathode in parallel in a reaction chamber, wherein the surface of the second electrode plate facing to the first electrode plate is provided with a sacrificial layer; putting a substrate on the surface of the first electrode plate facing to the sacrificial layer; leading etching gas into the reaction chamber; grounding the first electrode plate, and applying DC negative voltage to the second electrode plate; ionizing the etching gas into a plasma so as to etch the sacrificial layer, and depositing a film on the surface of the substrate. The film deposition method can improve the performance, particularly the stability of the film and the uniformity of large-area film deposition.
Owner:GS SOLAR FU JIAN COMPANY +1

Mg-Zn oxide tunnel barriers and method of formation

ActiveUS7252852B1Not diminishing spin polarizationImprove performanceNanomagnetismMagnetic measurementsOxygenZinc
ZnMg oxide tunnel barriers are grown which, when sandwiched between ferri- or ferromagnetic layers, form magnetic tunnel junctions exhibiting high tunneling magnetoresistance (TMR). The TMR may be increased by annealing the magnetic tunnel junctions. The zinc-magnesium oxide tunnel barriers may be incorporated into a variety of other devices, such as magnetic tunneling transistors and spin injector devices. The ZnMg oxide tunnel barriers are grown by first depositing a zinc and / or magnesium layer onto an underlying substrate in oxygen-poor (or oxygen-free) conditions, and subsequently depositing zinc and / or magnesium onto this layer in the presence of reactive oxygen.
Owner:IBM CORP

Array cytometry

A method and apparatus for the manipulation of colloidal particulates and biomolecules at the interface between an insulating electrode such as silicon oxide and an electrolyte solution. Light-controlled elektrokinetic assembly of particles near surfaces relies on the combination of three functional elements, the AC electric field-induced assembly of planar aggregates; the patterning of the electrolyte / silicon oxide / silicon interface to exert spatial control over the assembly process; and the real-time control of the assembly process via external illumination. The present invention provides a set of fundamental operations enabling interactive control over the creation and placement of planar arrays of several types of particles and biomolecules and the manipulation of array shape and size. The present invention enables sample preparation and handling for diagnostic assays and biochemical analysis in an array format, and the functional integration of these operations. In addition, the present invention provides a procedure for the creation of material surfaces with desired properties and for the fabrication of surface-mounted optical components. This invention is also for a method and apparatus to direct the lateral motion and induce the assembly into planar arrays of cells on semiconductor surfaces in response to temporally and spatially varying electric fields and to projected patterns of illumination.
Owner:BIOARRAY SOLUTIONS

Platinum-Based Electrocatalysts Synthesized by Depositing Contiguous Adlayers on Carbon Nanostructures

High-surface-area carbon nanostructures coated with a smooth and conformal submonolayer-to-multilayer thin metal films and their method of manufacture are described. The preferred manufacturing process involves the initial oxidation of the carbon nanostructures followed by immersion in a solution with the desired pH to create negative surface dipoles. The nanostructures are subsequently immersed in an alkaline solution containing non-noble metal ions which adsorb at surface reaction sites. The metal ions are then reduced via chemical or electrical means and the nanostructures are exposed to a solution containing a salt of one or more noble metals which replace adsorbed non-noble surface metal atoms by galvanic displacement. Subsequent film growth may be performed via the initial quasi-underpotential deposition of a non-noble metal followed by immersion in a solution comprising a more noble metal. The resulting coated nanostructures may be used, for example, as high-performance electrodes in supercapacitors, batteries, or other electric storage devices.
Owner:BROOKHAVEN SCI ASSOCS

Lubricating Oil Composition

An internal-combustion engine lubricating oil composition has a P content of not greater than 0.09 mass %; a S content of not greater than 0.3 mass %; and a sulphated ash content of not greater than 1 mass %. It contains the following additives: as sole ashless, nitrogen-containing dispersant, and providing from 0.03 to 0.07 mass % of nitrogen in the lubricating oil composition, at least one ashless, nitrogen-containing derivative of a polyalkenyl-substituted mono- or dicarboxylic acid, anhydride or ester, the polyalkenyl-substituted mono- or dicarboxylic acid, anhydride or ester being made from a polyalkene exclusively by the thermal “ene” reaction; as sole overbased metal detergent, at least one overbased alkaline earth metal sulfonate; and at least one viscosity modifier.
Owner:INFINEUM INT LTD

Mist fabrication of quantum dot devices

An example quantum dot (QD) device comprises a QD layer on a substrate, and may be fabricated by aerosol deposition, for example by mist deposition. An example approach includes providing a liquid precursor including QDs dispersed in a liquid carrier, generating a mist of droplets of the liquid precursor, directing the droplets towards the substrate so as to form a liquid precursor film on the substrate, and removing the liquid carrier from the liquid precursor film to form the quantum dot layer on the substrate. Example devices include multi-color QD-LED (light emitting diode) displays, and other devices.
Owner:PENN STATE RES FOUND

Apparatus for depositing a multilayer coating on discrete sheets

A tool for depositing multilayer coatings onto a substrate. In one configuration, the tool includes a includes an in-line organic material deposition station operating under at least one of a pressure or temperature controlled environment. In another, it further is of a hybrid design that incorporates both in-line and cluster tool features. In this latter configuration, at least one of the deposition stations is configured to deposit an inorganic layer, while at least one other deposition station is configured to deposit an organic layer. The tool is particularly well-suited to depositing multilayer coatings onto discrete substrates, as well as to encapsulating environmentally-sensitive devices placed on the flexible substrate.
Owner:SAMSUNG DISPLAY CO LTD

Electronic package with high density interconnect layer

An electronic package, and method of making the electronic package, is provided. The package includes a semiconductor chip and an multi-layered interconnect structure having a high density interconnect layer such as an allylated surface layer. The semiconductor chip includes a plurality of contact members on one of its surfaces that are connected to the multi-layered interconnect structure by a plurality of solder connections. The multi-layered interconnect structure is adapted for electrically interconnecting the semiconductor chip to a circuitized substrate (eg., circuit board) with another plurality of solder connections and includes a thermally conductive layer being comprised of a material having a selected thickness and coefficient of thermal expansion to substantially prevent failure of the solder connections between said first plurality of electrically conductive members and the semiconductor chip. The electronic package further includes a dielectric material having an effective modulus to assure sufficient compliancy of the multi-layered interconnect structure during operation. The allylated surface layer has the property of being able to withstand thermal stresses that arise during thermal cycling operation of the electronic package.
Owner:ULTRATECH INT INC

Aerosol and injectable formulations of nanoparticulate benzodiazepine

Described are nanoparticulate formulations of a benzodiazepine, such as lorazepam, that does not require the presence of polyethylene glycol and propylene glycol as stabilizers, and methods of making and using such formulations. The formulations are particularly useful in aerosol and injectable dosage forms, and comprise nanoparticulate benzodiazepine, such as lorazepam, and at least one surface stabilizer. The formulations are useful in the treatment of status epilepticus, treatment of irritable bowel syndrome, sleep induction, acute psychosis, and as a pre-anesthesia medication.
Owner:ELAN PHRMA INT LTD

Apparatus and method of dispensing small-scale powders

An apparatus and method of dispensing small-scale powders for a variety of applications, including, for example, fabricating a three-dimensional heterogeneous small-scale device, includes using a feed mechanism that causes motion of the powder particles and the steps of depositing fine heterogeneous materials (such as dry powders and biological materials) towards a substrate. The depositing step preferably includes providing a feed mechanism having an input to receive the material, an output, and a source of ultrasonic vibration to impart a torsional force on the material so as to precisely discharge the material from the output. To improve particle flowability, a cooling system is provided to cool the source, generally above a threshold input voltage.
Owner:WISCONSIN ALUMNI RES FOUND

Low dose pharmaceutical powders for inhalations

The invention relates to a method of delivering an agent to the pulmonary system of a compromised patient, in a single breath-activated step, comprising administering a particle mass comprising an agent from an inhaler containing less than 5 milligrams of the mass, wherein at least about 50% of the mass in the receptacle is delivered to the pulmonary system of a patient. The invention also relates to receptacles containing the particle mass and the inhaler for use therein.
Owner:CIVITAS THERAPEUTICS

Electroplated quaternary alloys

InactiveUS20050173255A1Facilitate depositionIncreasing bright plating rangeMetal alloyCobalt
Disclosed are methods of electroplating a quaternary alloy containing nickel, cobalt, and at least two metal alloys involving providing an electroplating bath comprising ionic nickel, ionic cobalt, at least two ionic alloy metals, and at least one brightener; and applying a current to the electroplating bath whereby a quaternary alloy forms.
Owner:TASKEM

Method of forming a metal carbide or metal carbonitride film having improved adhesion

A method for forming a metal carbide or metal carbonitride film on a substrate using a vapor deposition process. The method includes comprises introducing a first process material, such as a film precursor, to the substrate followed by introducing a second process material, such as a film reducing agent, to the substrate, whereby plasma can be formed during the introduction of the second process material in order to assist reduction of the first process material on the substrate. Additionally, the temperature of the substrate is elevated to a value approximately equal to or greater than the decomposition temperature of the first process material in order to improve adhesion properties for the metal carbide or metal carbonitride film.
Owner:TOKYO ELECTRON LTD

An ecological soft-shelled turtle complete compound feed

InactiveCN101548727APromote oxidative metabolismReduce depositionClimate change adaptationAnimal feeding stuffMicrobial agentBody colour
An ecological soft-shelled turtle complete compound feed The invention discloses an ecological soft-shelled turtle complete compound feed, including the following material components (each component is in the air-dry substance weight percentage): 30-40% of white fish meal, 15-25% of red fish meal, 4-8 % of fermented soybean mea, 3-6% of extruded soybean, 1-4% of wheat gluten, 4-8% of beer yeast, 3-6% of maize protein meal, 1-3% of marigold flower powder, 18-25% of pre-gelatinized starch, 1-2% of calcium phosphate, 0.1-0.3% of fat metabolism regulator, 0.05-0.3% of enzyme preparation, 0.1-0.4% of microbial agents, 0.1-0.3% of compound multivitamins, 0.5-1.5% of composite multi-ore, 0.2-0.5% of 50% choline chloride. The invention improves the appearance body colour and inherent quality of the artificial breeding soft-shelled turtle which can be comparable wit natural growth wild soft-shelled turtles, thereby enhancing the commodity value of soft-shelled turtles.
Owner:ZHEJIANG JINDADI FEED

Method of forming a magnetic tunneling junction (MTJ) MRAM device and a tunneling magnetoresistive (TMR) read head

An MTJ (magnetic tunneling junction) device particularly suitable for use as an MRAM (magnetic random access memory) or a tunneling magnetoresistive (TMR) read sensor, is formed on a seed layer which allows the tunneling barrier layer to be ultra-thin, smooth, and to have a high breakdown voltage. The seed layer is a layer of NiCr which is formed on a sputter-etched layer of Ta. The tunneling barrier layer for the MRAM is formed from a thin layer of Al which is radically oxidized (ROX), in-situ, to form the layer with characteristics described above. The tunneling barrier layer for the read sensor formed from a thin layer of Al or a HfAl bilayer which is naturally oxidized (NOX), in situ, to form the barrier layer. The resulting device has generally improved performance characteristics in terms of GMR ratio and junction resistance.
Owner:APPLIED SPINTRONICS +1

Jet yarn spinning device for electrostatic spun nano fiber and preparing method

The invention discloses a jet yarn spinning device for an electrostatic spun nano fiber, which includes a collecting device, wherein two thread jetting devices are arranged on the two sides of the collecting device and connected with a high-voltage electrostatic generator; a buncher is arranged below the collecting device; the two thread jetting devices are arranged between the collecting device and the buncher and symmetrically and oppositely arranged along the axis; a jet nozzle twister is arranged below the buncher; a delivery roller is arranged below the jet nozzle twister; a winding mechanism is arranged below the delivery roller; and the collecting device, the buncher, the jet nozzle twister and the delivery roller are arranged along the same axis from top to bottom. The electrostatic spun nano fiber spinning device integrates thread jetting, collecting, drawing, twisting and winding, and can continuously prepare the electrostatic spun nano fiber yarns. The nano fiber spinning method has simple process, high yarn yield, is suitable for multiple polymer yarn solutions, and realizes the continuous and scaled preparation of the nano fiber yarns.
Owner:ZHONGYUAN ENGINEERING COLLEGE

Device and technique for multiple channel patch clamp recordings

A device to facilitate electrophysiological measurements of a biological material comprises a plate having a plurality of wells that each have an end. At least some of the wells have a hole formed in the end, and the holes are configured to receive an individual cell such that a high resistance seal is formed between the cell and the end. A chamber is disposed adjacent the plate and is in fluid communication with each of the holes. A common electrode is disposed in the chamber, and a plurality of well electrodes are configured to be positioned within the wells. In this way, a voltage gradient may be created across cell membranes of cells that are positioned within the holes so that electrophysiological measurements of the cells may be taken.
Owner:AFFYMAX RES INST INC +1

Preparation method of flexible strain sensor based on conductive fiber and application thereof

ActiveCN108560250AHigh ability to adapt to deformationExpand the detection rangeFibre treatmentCatheterYarnFiber
The invention provides a preparation method of a flexible strain sensor based on conductive fiber and application thereof. The conductive fiber comprises a metal nanowire as a conductive layer, an electrospun polymer nanofiber membrane as a protective layer and an elastic yarn as an elastic carrier. In the preparation process, the surface of the elastic yarn is coated with a layer of polymer nanofiber membrane by an electrospinning technology first and then the metal nanowire is deposited on the surface structure thereof through multiple dip coating. The prepared flexible strain sensor based on the conductive fiber has the ability of quickly detecting various deformations such as stretching, bending and twisting, and the sensitivity thereof is still maintained to be 90% or above after thenumber of stretching cycles reaches 10,000; the flexible strain sensor can achieve simultaneous detection of human pulse beat, vocal cord vibration and more complex multiple sites, and has a great application potential in smart wearable devices such as virtual reality, human-machine interfaces and health monitoring.
Owner:GENERAL HOSPITAL OF PLA +1

Freshwater fish feed and preparation method thereof

The invention discloses freshwater fish feed and a preparation method thereof. The feed comprises the following materials in percentage by weight: 5%-17% of import fish powder, 8%-22% of flour, 3%-16% of potato starch, 3%-18% of beer yeast, 5%-15% of bean pulps, 5%-15% of peanut pulps, 5%-10% of rape seed cakes, 2%-8% of corn powder, 3%-9% of cooked egg protein, 5%-8% of dried meat floss powder, 1%-2% of liquid phytase, 1%-3% of non-starch polysaccharase, 0.5%-1.9% of glutamine, 1%-2% of microecological preparation and 1%-3% of immune polysaccharides. The preparation process comprises a crushing step, a mixing step, a pelletizing step and a spraying step. The freshwater fish feed has the beneficial effects of being capable of well satisfying the nutrition needs of freshwater fish, improving the immunity of the freshwater fish, prompting intestinal absorption and improving the production performance of the freshwater fish.
Owner:射阳六和饲料有限公司

Porous phosphorus removing ceramic granules with function of slowly releasing alkali and preparation method thereof

The invention discloses porous phosphorus removing ceramic granules with a function of slowly releasing an alkali and a preparation method thereof. The prepared ceramic granules are an environmental material for efficiently removing phosphorus from municipal sewage and industrial wastewater. Based on the basic chemical properties of the phosphorus in water and a phosphorus removing mechanism by chemical absorption, the preparation method of the ceramic granules comprises the following steps of: mixing 20 to 40 mass percent of ordinary portland cement (42.5 level), 10 to 20 mass percent of bentonite, 10 to 20 mass percent of fly ash, 10 to 15 mass percent of calcium oxide, 15 to 25 mass percent of nitrocellulose, 14 to 30 mass percent of xonotlite fiber particle and 0.1 to 0.5 mass percent of pore-creating agent; adding water for stirring the mixture according to a water-solid ratio of 0.35 to 0.45; granulating the mixture into granules with required grain sizes; and after the granules are foamed and solidified, curing the granules by using high-temperature steam to obtain the ceramic granules. The method has the advantages of simple preparation process, readily available raw materials, low cost and wide application prospect in the field of the removing of the phosphorus in water bodies. The prepared ceramic granules have the characteristics of capacity of slowly releasing the alkalis, silicic and calcareous textures, porosity, capacity of continuously and efficiently absorbing and removing the phosphorus and suitability for phosphorus removing systems of the municipal sewage and the industrial wastewater.
Owner:郑俊 +1

Copper alloy sputtering target and method for manufacturing the target

ActiveUS20050121320A1Superior in sputtering deposition characteristicStable and even seed layer during electroplatingCellsSemiconductor/solid-state device detailsDevice materialInterconnection
A copper alloy sputtering target most suitable for formation of an interconnection material of a semiconductor device, particularly for formation of a seed layer, characterized in that the target contains 0.4 to 5 wt % of Sn, and the structure of the target does not substantially contain any precipitates, and the resistivity of the target material is 2.2 μΩcm or more. This target enables formation of an interconnection material of a semiconductor device, particularly a uniform seed layer stable during copper electroplating and is excellent in sputtering deposition characteristics. A method for manufacturing such a target is also disclosed.
Owner:JX NIPPON MINING& METALS CORP

Expanded hollow micro sphere composite beads and method for their production

The invention provides expanded hollow micro sphere composite beads and a process for producing the beads. According to the invention, finely divided calcium carbonate can be uniformly deposited on expanded hollow thermoplastic polymer micro spheres by a simple procedure without incurring breakage of the expanded micro spheres so that the scattering of beads can be effectively inhibited. The preferred production process comprises admixing expanded hollow thermoplastic polymer micro spheres (A), with colloidal calcium carbonate (B) which has been surface-activated with a surface-treating agent or dispersing agent, e.g. a fatty acid series or polymer acid series compound. The admixing can be typically effected by dry-blending, preferably at a temperature of about 50-100° C.
Owner:AKZO N V NOBEL +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products