Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1600 results about "Metallic sulfide" patented technology

Metallic sulfide mining (aka hard rock mining) is the practice of extracting metals such as nickel, gold and copper from a sulfide-rich ore body.

Sulfur-containing thin films

In some aspects, methods of forming a metal sulfide thin film are provided. According to some methods, a metal sulfide thin film is deposited on a substrate in a reaction space in a cyclical process where at least one cycle includes alternately and sequentially contacting the substrate with a first vapor-phase metal reactant and a second vapor-phase sulfur reactant. In some aspects, methods of forming a three-dimensional architecture on a substrate surface are provided. In some embodiments, the method includes forming a metal sulfide thin film on the substrate surface and forming a capping layer over the metal sulfide thin film. The substrate surface may comprise a high-mobility channel.
Owner:ASM IP HLDG BV

Sulfur-containing thin films

In some aspects, methods of forming a metal sulfide thin film are provided. According to some methods, a metal sulfide thin film is deposited on a substrate in a reaction space in a cyclical process where at least one cycle includes alternately and sequentially contacting the substrate with a first vapor-phase metal reactant and a second vapor-phase sulfur reactant. In some aspects, methods of forming a three-dimensional architecture on a substrate surface are provided. In some embodiments, the method includes forming a metal sulfide thin film on the substrate surface and forming a capping layer over the metal sulfide thin film. The substrate surface may comprise a high-mobility channel.
Owner:ASM IP HLDG BV

Metal amides of cyclic amines

Compounds, and oligomers of the compounds, are synthesized with cyclic amine ligands attached to a metal atom. These compounds are useful for the synthesis of materials containing metals. Examples include pure metals, metal alloys, metal oxides, metal nitrides, metal phosphides, metal sulfides, metal selenides, metal tellurides, metal borides, metal carbides, metal silicides and metal germanides. Techniques for materials synthesis include vapor deposition (chemical vapor deposition and atomic layer deposition), liquid solution methods (sol-gel and precipitation) and solid-state pyrolysis. Suitable applications include electrical interconnects in microelectronics and magnetoresistant layers in magnetic information storage devices. The films have very uniform thickness and high step coverage in narrow holes.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE

Method for using low-temperature plasma to prepare supported metal sulfide catalyst

The invention discloses a method for using low-temperature plasma to prepare a supported metal sulfide catalyst and belongs to the technical field of material science. The method is characterized by including: allowing ionization of hydrogen sulfide gas or gas containing hydrogen sulfide through gas discharge to form the low-temperature plasma distributed evenly, and using the low-temperature plasma to interact with supported metal salt precursor to generate metal sulfide. Due to the fact that the catalyst is avoided from being exposed in excessively high temperature, the prepared catalyst is free of thermal agglomeration, so that the catalyst is smaller in particle size and higher in dispersity. The method is suitable for preparation of various sulfide catalysts, metal sulfide can be supported on different materials to prepare various supported catalysts. The method has the advantages of low reaction temperature, low energy consumption, short preparation time and the like. In addition, processing objects are common metal salt, wide involve range is achieved, and the prepared catalyst is applicable to various common heterogeneous reactions.
Owner:DALIAN UNIV OF TECH

Chemically-impregnated silicate agents for mercury control

The present invention is directed to a contaminant removal agent comprising a polyvalent metal sulfide on the surface of an inert substrate. The substrate can be a layered silicate, such as vermiculite, an aluminosilicate such as montmorillonite, or a nonlayered silicate such as a zeolite. The agent removes mercury from process streams. The ion exchange to deposit the polyvalent metal on the substrate is preferably performed at a pH above the pHZPC.
Owner:ENVIRONMENTAL ENERGY SERVICES

Light emitting device for generating specific colored light, including white light

A device for the generation of specific colored light including white light by luminescent down conversion and additive color mixing based on a light-emitting diode (LED) comprising a semiconductor light-emitting layer emitting near UV light about 370-420 nm or blue light about 420-480 nm and phosphors which absorb completely or partly the light emitted by the light-emitting component and emit light of wavelengths longer than that of the absorbed primary light, wherein the light emitting layer of the light emitting component is preferably a Ga(In)N-based semiconductor; and at least one of the phosphors contains a metal sulfide fluorescent material activated with europium containing at least one element selected from the group consisting of Ba, Sr, Ca, Mg and Zn; and / or at least another phosphor which contains a complex thiometalate fluorescent material activated with either europium, cerium or both europium and cerium containing 1) at least one element selected from the group consisting of Ba, Sr, Ca, Mg and Zn and 2) at least one element selected from the group consisting of Al, Ga, In, Y, La and Gd.
Owner:OSRAM OPTO SEMICONDUCTORS GMBH +1

Process for desulfurizing hydrocarbon fuels and fuel components

Processes are disclosed for removing sulfur, including cyclic and polycyclic organic sulfur components such as thiophenes and benzothiophenes, from a hydrocarbon feedstock including fuels and fuel components. The feedstock is contacted with a regenerable sorbent material capable of selectively adsorbing the sulfur compounds present in the hydrocarbon feedstock in the absence of a hydrodesulfurization catalyst. In one embodiment, the sorbent can be an active metal oxide sulfur sorbent in combination with a refractory inorganic oxide cracking catalyst support. In another embodiment, the sorbent can be a metal-substituted refractory inorganic oxide cracking catalyst wherein the metal is a metal which is capable in its oxide form, of adsorption of reduced sulfur compounds by conversion of the metal oxide to a metal sulfide. The processes are preferably carried out in a transport bed reactor.
Owner:RES TRIANGLE INST

Sulfide coated particle as well as preparation method and application thereof

The invention discloses a sulfide coated particle as well as a preparation method and an application thereof. The sulfide coated particle comprises a core and a shell coating the core, wherein the core is prepared from at least one of metal, oxide, metal hydroxide, metal inorganic salt, elemental carbon or oxysome thereof, carbide, nitride, semiconductor and organic matter; the shell is prepared from metal sulfide. The to-be-coated core is mixed with the metal salt, a reducing agent and a sulfur source with a liquid phase method, metal sulfide is precipitated to the particle surface through in-situ reduction, and uniform, continuous and controllable coating of the core surface with metal sulfide is realized. The coating method is simple, reaction conditions are mild, universality is high,a coating layer is controllable in thickness, complete and uniform, and the sulfide coated particle has quite broad practical application prospect in the fields of electrocatalysis, lithium ion batteries, biomedicine and the like.
Owner:INST OF CHEM CHINESE ACAD OF SCI +1

Dispersed metal sulfide-based catalysts

The invention provides a catalyst composition, which includes an emulsion of an aqueous phase in an oil phase, wherein the aqueous phase comprises an aqueous solution containing a group 6 metal and a group 8, 9 or 10 metal. The metals can be provided in two separate emulsions, and these emulsions are well suited for treating hydrocarbon feedstocks.
Owner:INTREVEP SA

Composite heavy metal polluted soil in-situ fixing method

ActiveCN102303041APromote mineralization reactionQuick fixContaminated soil reclamationWater insolubleMagnesium sulfite
The invention discloses a composite heavy metal polluted soil in-situ fixing method. The method comprises the following steps of: preparing a heavy metal polluted soil restoration agent by using 80 to 90 weight parts of bentonite or kaolin serving as a filling agent, 0.5 to 15 weight parts of ferrous sulfide, 0.5 to 5 weight parts of magnesium sulfate, 1.5 to 8 weight parts of magnesium sulfite, 1 to 5 weight parts of magnesium oxide, 2 to 10 weight parts of calcium hydroxide and 1 to 5 weight parts of phosphorus-containing preparation; and mixing the components and heavy metal polluted soil according to the weight ratio of 1:(5-20), and uniformly stirring to make the humidity of the soil kept between 15 and 30 percent, wherein heavy metal ions in the polluted soil are converted into water-insoluble metal sulfides, hydroxides, multi-metal co-precipitates, basic carbonates and phosphate minerals, the biological activity of heavy metal is lost, and the heavy metal is fixed in the soil. The restored soil meets the requirement of second-level standard values of 'Environmental Quality Standard for Soil' (GB 15618-1995) in China.
Owner:刘阳生

Separators for use in alkaline cells having high capacity

The present invention relates to an electrochemical cell comprising an anode, a cathode, and a separator disposed between the anode and cathode. More particularly, the present invention relates to an electrochemical cell comprising, among other things, a separator impregnated with, and / or coated with a layer of, a clay and / or a metal sulfide additive. The present invention additionally or alternatively relates to an electrochemical cell which comprises, among other things, a self-supporting or free-standing thin film separator. The present invention additionally or alternatively relates to an electrochemical cell which comprises, among other things, a separator, wherein at least a portion thereof is covered by an adhesive material that is bonded to the container or a sealing assembly of the cell.
Owner:ROVCAL +1

Regenerable high capacity sorbent for removal of mercury from flue gas

A regenerable, high-capacity sorbent for removal of mercury from flue gas and processes and systems for making and using the sorbent. A phyllosilicate substrate, for example vermiculite or montmorillinite, acts as an inexpensive support to a thin layer for a polyvalent metal sulfide, ensuring that more of the metal sulfide is engaged in the sorption process. The sorbent is prepared by ion exchange between the silicate substrate material and a solution containing one or more of a group of polyvalent metals including tin (both Sn(II) and Sn(IV)), iron (both Fe(II) and Fe(III)), titanium, manganese, zirconium and molybdenum, dissolved as salts, to produce an exchanged substrate. Controlled reaction of a sulfide ion source with the one or more polyvalent metals that are exchanged on the silicate substrate produces the sorbent. The sorbent is used to absorb elemental mercury or oxidized mercury species such as mercuric chloride from flue gas containing acid gases (e.g., SO2, NO and NO2, and HCl) and other gases over a wide range of temperatures.
Owner:ENVIRONMENTAL ENERGY SERVICES

Anode for nonaqueous secondary electrochemical cells

The negative electrode or anode for a secondary electrochemical cell comprising a mixture of graphite or "hairy carbon" and a lithiated metal oxide, a lithiated mixed metal oxide or a lithiated metal sulfide, and preferably a lithiated metal vanadium oxide, is described. A most preferred formulation is graphite mixed with lithiated silver vanadium oxide or lithiated copper silver vanadium oxide.
Owner:WILSON GREATBATCH LTD

Alkali Metal-Sulfur Secondary Battery Containing a Protected Sulfur Cathode and Manufacturing Method

Provided is a rechargeable alkali metal-sulfur cell comprising an anode active material layer, an electrolyte, and a cathode active material layer containing multiple particulates of a sulfur-containing material selected from a sulfur-carbon hybrid, sulfur-graphite hybrid, sulfur-graphene hybrid, conducting polymer-sulfur hybrid, metal sulfide, sulfur compound, or a combination thereof and wherein at least one of the particulates is composed of one or a plurality of sulfur-containing material particles being embraced or encapsulated by a thin layer of a high-elasticity polymer having a recoverable tensile strain no less than 10% when measured without an additive or reinforcement, a lithium ion conductivity no less than 10−5 S / cm at room temperature, and a thickness from 0.5 nm to 10 μm. This battery exhibits an excellent combination of high sulfur content, high sulfur utilization efficiency, high energy density, and long cycle life.
Owner:GLOBAL GRAPHENE GRP INC

Sorbents for Removal of Mercury from Flue Gas

Metal sulfides having a micro-porous structure are disclosed for use as sorbents for removal of mercury from flue gas. Systems are disclosed for making and using micro-porous particulates at least partially composed of alkaline earth metal and transition metal sulfides as sorbents. Calcium sulfide micro-porous powders derived from the high temperature reduction of calcium sulfate and calcium sulfite are disclosed to be reactive substrates for a group of sorbents for adsorption of mercury from the myriad of coal combustion flue gases produced by the utilities industry, as well as from natural gas and gaseous and liquid hydrocarbons. Controlled addition of one or more of polyvalent metal ions, chloride ions, polysulfide ions, and sulfur to the micro-porous calcium sulfide substrate produces the sorbent. The sorbents are useful for cost-effectively adsorbing elemental mercury and oxidized mercury species such as mercuric chloride from flue gases, including those containing acid gases (e.g., SO.sub.2, NO and NO.sub.2, and HCI), over a wide range of temperatures.
Owner:CHEM PROD CORP

Method for synthesizing nanoparticles of metal sulfides

A synthetic method of fabricating highly crystalline and uniform nanoparticles of metal sulfides, doped metal sulfides, and multi-metallic sulfides disclosed, using no-toxic and inexpensive reagents. A typical synthetic method comprises the steps of, synthesis of metal-surfactant complexes from the reaction of metal precursors and surfactant, addition of sulfur reagent to the solution containing said metal-surfactant complexes followed by heating to high temperature, aging at that temperature to produce metal sulfide nanoparticles and completing the formation of synthesis of nanoparticles metal sulfides and multi-metallic sulfides by adding a poor solvent followed by centrifuging.
Owner:SEOUL NATIONAL UNIVERSITY

Alkali Metal-Sulfur Secondary Battery Containing a Polymer-Encapsulated Sulfur Cathode and Manufacturing Method

Provided is a rechargeable alkali metal-sulfur cell comprising an anode active material layer, an electrolyte, and a cathode active material layer containing multiple particulates of a sulfur-containing material selected from a sulfur-carbon hybrid, sulfur-graphite hybrid, sulfur-graphene hybrid, conducting polymer-sulfur hybrid, metal sulfide, sulfur compound, or a combination thereof and wherein at least one of the particulates is composed of one or a plurality of sulfur-containing material particles being embraced or encapsulated by a thin layer of a high-elasticity ultra-high molecular weight polymer having a recoverable tensile strain no less than 2%, a lithium ion conductivity no less than 10−6 S / cm at room temperature, and a thickness from 0.5 nm to 10 μm This battery exhibits an excellent combination of high sulfur content, high sulfur utilization efficiency, high energy density, and long cycle life.
Owner:GLOBAL GRAPHENE GRP INC

Environmental ceramic base friction material free of copper or metal and preparation method of material

The invention discloses an environmental ceramic base friction material free of copper or metal and a preparation method of the material. The environmental ceramic base friction material is characterized by comprising the following components by weight percent: 6-12% of phenolic resin, 2-10% of ceramic fiber, 2-8% of inorganic fiber, 2-10% of rubber, 4-12% of graphite, 10-25% of potassium titanate lamella, 3-15% of mineral fiber, 4-20% of metal sulfur compound, 6-20% of grinding aid and 5-20% of filler. The prepared friction material has excellent friction and wear properties, high heat-conducting property, excellent high-temperature decline property, stable friction coefficient, and excellent noise performance.
Owner:YANTAI SHENGRUI BRAKE SYST

Two-dimensional transition metal carbon (nitrogen) compound and two-dimensional transition metal sulfide nano-composite powder, and preparation and application thereof

The invention relates to a two-dimensional transition metal carbon (nitrogen) compound and two-dimensional transition metal sulfide nano-composite powder, and a preparation and application thereof. The nano-composite powder is formed by the uniform scattered recombination of a two-dimensional transition metal carbon (nitrogen) compound nanosheet and a two-dimensional transition metal sulfide nanosheet, wherein the percentage of the mass of the two-dimensional transition metal sulfide to the total mass of the nano-composite powder is 10%-99%. The method comprises the steps: enabling the steady suspension liquid of the two-dimensional transition metal carbon (nitrogen) compound nanosheet and the suspension liquid of the two-dimensional transition metal sulfide nanosheet are mixed according to a proportion; carrying out cooling and drying after supersonic mixing, and then obtaining the nano-composite powder. The nano-composite powder is simple in preparation, is safe and high in efficiency, is low in cost, remarkably irons out the defects of conductivity of the two-dimensional transition metal sulfide, and can regulate the conductivity through proportion change. The nano-composite powder serves as a negative electrode of a lithium ion battery and the electrode material of a supercapacitor, is good in application prospect in the field of energy storage devices, and is better in electrochemical performance than the two-dimensional transition metal sulfide.
Owner:NANJING TECH UNIV

Cast iron inoculant and method for production of cast iron inoculant

InactiveCN1281513AManganeseCerium
The invention relates to an inoculant for the manufacture of cast iron with lame llar, compacted or spheroidal graphite. The inoculant comprises between 40 and 80 % by weight of silicon, between 0.5 and 10 % by weight of calcium and / or strontium and / or barium, between 0 and 10 % by weight of cerium and / or lanthanum, between 0 and 5 % by weight of magnesium, less than 5% by weight of aluminium, between 0 and 10 % by weight of manganese and / or titanium and / or zirconium, between 0.5 and 10 % by weight of oxygen in the form of one or more metal oxides, the balanc e being iron, said inoculant further comprising between 0,1 and 10 % by weight of sulphur in the form of one or more metal sulphides. The invention further relate s to a method for the production of the inoculant.
Owner:ELKEM

Composite photocatalysts, method for making the same and application thereof

A composite photocatalyst is provided. The composite photocatalyst includes a nanomotor and a plurality of cocatalysts, the nanomotor comprises a shell formed by porous material, at least one inner core formed by a photocatalyst, and a cavity between the shell and the at least one inner core, the plurality of cocatalysts are located in the cavity. The plurality of cocatalysts are selected from the group consisting of metal nanoparticles, metal oxide nanoparticles, metal sulfide nanoparticles, phosphate nanoparticles, up-conversion material nanoparticles, and any combination thereof. A method for making the composite photocatalyst and application thereof are further provided. The plurality of cocatalysts and the nanomotor forms a photocatalytic synergistic reaction system, improving photo-catalytic activity of the composite photocatalyst.
Owner:HANGZHOU TONG KING ENVIRONMENT TECH CO LTD

Treatment of metal sulphide concentrates by roasting and electrically stabilized open-arc furnace smelt reduction

A process for treating a metal sulphide concentrate which includes the steps of: a) roasting the concentrate to reduce the sulphide content of the concentrate, to a negligible value and b) melting the concentrate, under reducing conditions, in an electrically stabilized open-arc furnace, in particular a DC arc furnace.
Owner:MINTEK

Self-supporting transitional metal sulfide catalyst and preparation methods and applications thereof

The present invention provides a self-supporting transitional metal sulfide catalyst and preparation methods and applications thereof, pertaining to the field of alkaline full electrolytic cell water decomposition. A preparation method of the catalyst comprises: mixing a metal salt of a transitional metal element with a sulfur source, and adding a surfactant, a catalyst carrier, and an alkaline solution to obtain a mixed solution; and then adding a transitional metal conductive substrate to the mixed solution to react to obtain a self-supporting transitional metal sulfide catalyst. Alternatively, a preparation method of the catalyst comprises: mixing a metal salt of a transitional metal element with a sulfur source, and a surfactant, a catalyst carrier, and an alkaline solution to obtain a mixed solution; and then with a transitional metal conductive substrate being used as a working electrode, performing electrodeposition in the obtained transitional metal sulfide electrolyte, to obtain a self-supporting transitional metal sulfide catalyst. The present invention also provides the self-supporting transitional metal sulfide catalyst prepared with the above two methods. The prepared sulfide catalyst, when applied in a battery, has excellent performance in electric hydrogen evolution and oxygen evolution.
Owner:CHANGCHUN INST OF APPLIED CHEMISTRY - CHINESE ACAD OF SCI

Alkali metal-sulfur secondary battery containing a protected sulfur cathode and manufacturing method

Provided is a rechargeable alkali metal-sulfur cell comprising an anode active material layer, an electrolyte, and a cathode active material layer containing multiple particulates of a sulfur-containing material selected from a sulfur-carbon hybrid, sulfur-graphite hybrid, sulfur-graphene hybrid, conducting polymer-sulfur hybrid, metal sulfide, sulfur compound, or a combination thereof and wherein at least one of the particulates is composed of one or a plurality of sulfur-containing material particles being embraced or encapsulated by a thin layer of a high-elasticity polymer having a recoverable tensile strain no less than 10% when measured without an additive or reinforcement, a lithium ion conductivity no less than 10−5 S / cm at room temperature, and a thickness from 0.5 nm to 10 μm. This battery exhibits an excellent combination of high sulfur content, high sulfur utilization efficiency, high energy density, and long cycle life.
Owner:GLOBAL GRAPHENE GRP INC

Flame-retardant resin composition

InactiveUS20060247339A1Avoid bleedingProportion of the flame retardant is lowAnti-corrosive paintsGreenhouse cultivationPolymer scienceMetallic sulfide
A flame-retardant resin composition comprises a base resin (e.g., a polyester-series resin), a flame retardant (A) comprising a salt of an amino group-containing triazine compound with a sulfuric acid and / or a sulfonic acid, a flame-retardant auxiliary (B). The flame-retardant auxiliary (B) includes an aromatic resin, acyclic urea-series compound or a derivative thereof [e.g., acetyleneurea, uric acid, a salt of melamine or a condensate thereof (e.g., melam, melem, and melon) with cyanuric acid], an amino group-containing triazine compound (e.g., melamine or a condensate thereof), and / or an inorganic metal-series compound (e.g., a metal salt of an oxygen acid having no sulfur atom, a metal oxide, a metal hydroxide, and a metal sulfide). The present invention provides a flame-retardant resin composition to which flame retardancy is imparted without using a halogen-series flame retardant and an organic phosphorus-series flame retardant.
Owner:POLYPLASTICS CO LTD

MXene-based flexible composite negative electrode material and preparation method thereof

The invention discloses an MXene-based flexible composite negative electrode material and a preparation method thereof. According to the MXene-based flexible composite negative electrode material andthe preparation method thereof, a transition metal sulfide is loaded on a two-dimensional layered structure of the MXene material through a hydrothermal method. The agglomeration effect of the MXene material is overcome, and the collapse of a layered structure is prevented. Meanwhile, the energy density of the composite material is improved. The MXene material with high conductivity acts as a three-dimensional conductive network skeleton, so that the conductivity and the mechanical strength of the composite material are enhanced. The volume expansion of the transition metal polysulfide material in the charging process is buffered. Meanwhile, the material has good charge-discharge cycle stability. The composite material and expanded graphite are combined to prepare a self-supporting high-flexibility negative electrode material. In the charging and discharging process, the hydrophilic MXene material has high affinity to polysulfides. The electrochemical performance and the capacitive deionization performance of the composite negative electrode material can be further improved. Sulfides generated by transition metal sulfides are eliminated. The shuttle effect of the polysulfides is limited, and the service life of the negative electrode material is prolonged.
Owner:FUJIAN XFH NEW ENERGY MATERIALS CO LTD

Nitrogen-doped porous vertical graphene nanowall array and preparation method and application thereof

The invention provides a nitrogen-doped porous vertical graphene nanowall array. A compact coating layer is formed by means of nickel hydroxide serving as a template and the self-assembly property of dopamine, then high-temperature carbonization is conducted to prepare a nitrogen-doped vertical graphene nanowall array material, in-situ functional modification is conducted on the basis, the compound functional material loaded with noble metal nanoparticles, noble metal alloy nanoparticles, metal oxides, metal sulfide, metal phosphide, conductive polymers and the like is obtained, and application in the fields of supercapacitors, lithium ion batteries, water decomposition, electrochemical catalysis, enzyme-free biosensors and the like is explored.
Owner:HUAZHONG UNIV OF SCI & TECH

Lithium sulfur battery membrane material and application thereof

The invention relates to a lithium sulfur battery membrane material and application thereof. The membrane material is obtained by smearing a mixed slurry of a catalyst, a conductive agent and a binder on the surface of polypropylene and then conducting drying, and is in a micrometer grade; the catalyst is metal oxide, metal nitride, metal sulfide or a metal simple substance; the conductive agent is acetylene black, ketjen black or a carbon nanotube; the binder is polyvinylidene fluoride, polyvinylidene difluoride, polyethylene oxide or polyacrylic acid. The conductive agent and the catalyst are all in the micrometer grade. The membrane can effectively stop polysulfide ions from diffusing from a negative electrode, so that the polysulfide ions aggregate on the surface on the membrane, and the catalyst can activate the polysulfide ions, and improve the actual specific capacity and the cycling stability. The lithium sulfur battery prepared by adopting the lithium sulfur battery membrane material has the advantages of being high in performance, long in service life and high in safety.
Owner:NANJING UNIV OF AERONAUTICS & ASTRONAUTICS

Method for quickly preparing quasi-graphite-structure carbon nitride material by adopting microwave heating

The invention relates to a quick, energy-saving and high-yield preparation method of quasi-graphite-structure carbon nitride catalysis materials and application of the materials, belonging to the field of preparation and application of catalysis materials. According to the preparation process, one or multiple nitrogen-rich small organic molecules of urea, melamine, thiourea, cyanamide, dicyanamide, cyanuric chloride and cyanuric acid is / are taken as raw materials, a simple metal substance, a metallic oxide, a metal sulfide and a metal chloride are taken as microwave absorbers, microwave is taken as a heating source, and under the condition of radiation of microwave, the quasi-graphite-structure carbon nitride material can be quickly prepared. The prepared carbon nitride material has a large specific area and crystallinity and has high photocatalytic water decomposition hydrogen production performance and organic pollutant degradation performance. The preparation method provided by the invention is short in time, small in energy consumption, high in production efficiency and simple in process, does not have harsh preparation conditions, is easy to operate and has wide application prospect.
Owner:ANHUI UNIVERSITY

Preparation method of mono-atomic cobalt based nitrogen-sulfur dually-doped carbon material catalyst

A metal ligand is changed, and through precisely controlled carbonization and metal high temperature reduction, a metal mono-atomic nitrogen-sulfur dually-doped carbon material is obtained. An S-containing ligand is added to prevent the generation of metal carbides during the pyrolysis process; the temperature and time of pyrolysis are controlled to avoid the precipitation of a carbon layer; metalions are anchored in a carbon skeleton of graphene; exposed metal nitrides and metal sulfides on the surface can be easily removed by acids; mono-atom level dispersion of metals in a graphene structure is realized, and at the same time, more active sites are exposed. The adjusting function of S during the pyrolysis process is smartly utilized to synthesize a metal mono-atomic catalyst, all metalatoms (100%) are utilized, and the dispersion, stability, and characteristic activity of the catalyst are all improved. Furthermore, the synergistic effect is generated by co-doping of nitrogen and sulfur and the catalytic activity is further enhanced. The prepared mono-atomic catalyst has excellent hydrogen evolution / oxygen reduction catalytic activity, the operation is simple, the industrial production is easy, and the catalyst can be widely applied to fuel cells that take a proton exchange membrane as the electrolyte.
Owner:CHONGQING UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products