Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2496 results about "Large pore" patented technology

Blood testing tool

A blood testing tool is provided, which separates blood cells and can collect blood plasma or blood serum with a high yield. The blood testing tool includes an asymmetric porous membrane with a pore size distribution in which an average pore size varies to be reduced continuously or discontinuously in a thickness direction. The porous membrane includes a blood supply portion, a development portion, and a blood-cell blocking portion formed between the blood supply portion and the development portion and pores in the blood cell blocking portion include only pores through which blood cells cannot pass. When blood is supplied to one side with larger pores of the blood supply portion, the blood moves in a direction parallel to a surface of the porous membrane by a capillary phenomenon, but only blood plasma or blood serum moves into the development portion to develop.
Owner:ARKRAY INC

Fluid cat cracking with high olefins prouduction

The propylene production of a fluid catalytic cracking unit employing a large pore zeolite cracking catalyst, produces more propylene by adding a naphtha cracking riser and a medium pore zeolite catalytic component to the unit, and recycling at least a portion of the naphtha crackate to the naphtha riser. The large pore size zeolite preferably comprises a USY zeolite and the medium pore size is preferably ZSM-5. Propylene production per unit of naphtha feed to the naphtha riser is maximized, by using the 60-300.degree. F. naphtha crackate as the feed.
Owner:EXXON RES & ENG CO

Amorphous silica-alumina, a carrier combination and a hydrocracking catalyst containing the same, and processes for the preparation thereof

An acidic amorphous silica-amumina has a large specific surface area and a large pore volume. A carrier complex and a hydrotreating catalyst containing acidic amorphous silica-alumina, in particular a hydrocracking catalyst containing acidic amorphous silica-alumina in combination with a modified zeolite-Y, treats petroleum hydrocarbon materials to produce middle distillates. The amorphous silica-alumina has a SiO2 content of 10-50 wt. %, a specific surface area of 300-600 m2 / g, a pore volume of 0.8-1.5 ml / g and an IR acidity of 0.25-0.60 mmol / g. The catalyst shows a relatively high activity and mid-distillate selectivity and can be particularly used in hydrocracking process for producing mid-distillates with a higher yield.
Owner:CHINA PETROCHEMICAL CORP +1

Methods to improve heteroatom lattice substitution in large and extra-large pore borosilicate zeolites

InactiveUS6790433B2Controlled catalytic propertyAluminium compoundsMolecular sieve catalystsIron saltsAluminosilicate
The invention, in one embodiment, is a method for preparing crystalline zeolites by (a) contacting a calcined essentially aluminum free borosilicate zeolite with an aqueous acid solution, thereby producing an at least partially deboronated zeolite; (b) contacting said at least partially deboronated zeolite with a solution selected from the group consisting of an aqueous aluminum salt solution, thereby producing an aluminosilicate zeolite; an aqueous gallium salt solution, thereby producing a gallosilicate zeolite; an aqueous iron salt solution, thereby producing a ferrosilicate zeolite; and mixtures thereof; and (c) where the contacting in step (b) occurs at a pH of not greater than about 3.5. In another embodiment, the present invention provides a method for preparing crystalline zeolites by contacting a calcined essentially aluminum free large or extra-large pore borosilicate zeolite with a solution selected from the group consisting of an aqueous aluminum salt solution, thereby producing an aluminosilicate zeolite; an aqueous gallium salt solution, thereby producing a gallosilicate zeolite; an aqueous iron salt solution, thereby producing a ferrosilicate zeolite; and mixtures thereof; and where the contacting occurs at a pH of not greater than about 3.5.
Owner:CHEVROU USA INC

Method for preparing metallurgy-level aluminum oxide by using fluidized bed pulverized fuel ash

The invention discloses a method for preparing metallurgy-level aluminum oxide by using fluidized bed pulverized fuel ash as a raw material. The method comprises the following steps of: a) grinding the pulverized fuel ash, and removing iron by a wet magnetic separation method; b) reacting the pulverized fuel ash subjected to magnetic separation with hydrochloric acid to obtain hydrochloric acid immersion liquid; c) allowing the hydrochloric acid immersion liquid to pass through a large pore type cation resin column for further iron removal to obtain refined aluminum chloride solution; d) concentrating the refined aluminum chloride solution, and crystallizing to obtain an aluminum chloride crystal; and e) calcining the aluminum chloride crystal and decomposing to obtain the metallurgy-level aluminum oxide. The method has a simple process and an easily-controlled production process, and is high in aluminum oxide extraction efficiency, low in production cost and stable in product quality.
Owner:CHINA SHENHUA ENERGY CO LTD

Preparation methods for macroporous alumina carrier and hydrodemetallization catalyst

The invention discloses preparation methods for a macroporous alumina carrier and a hydrodemetallization catalyst. The preparation method for the macroporous alumina carrier includes the following steps: (1) dry pseudoboehmite gel powder is hydrothermally processed under high pressure; (2) the dry pseudoboehmite gel powder obtained in step 1 is kneaded into a plastic, and pore-expanding agent is added in step 1 or step 2; (3) the plastic obtained in step 2 is shaped, the shaped material is dried and baked, and thereby the macroporous alumina carrier is obtained. The impregnation method is adopted to prepare the hydrodemetallization catalyst. The hydrodemetallization catalyst prepared by the method has large pore volume and pore diameter, centrally distributed pores, moderate mechanical strength and high activity and activity stability.
Owner:CHINA PETROLEUM & CHEM CORP +1

Quasi-thin empholite composition containing organic reaming agent

The present invention relates to a pseudothin diaspore composition containing organic pore-expanding agent. Said composition contains 92-99.5 wt% of pseudothin diaspore and 0.5-8 wt% of organic pore-expanding agent, in which the crystallinity of pseudothin diaspore is 10-70%. In the pseudothin diaspore composition provided by said invention the organic pore-expanding agent content is low, after high-temperature calcination the alumina with large pore capacity and large pore diameter can be obtained. Said alumina can be used as carrier material for preparing hydrodemetalization catalyst for heavy oil, residual oil and short residuum specially.
Owner:CHINA PETROLEUM & CHEM CORP +1

Regeneration of used supported noble metal catalysts

A method for regenerating used supported noble metal catalysts, which method includes solvent cleaning the used catalyst by contact with a suitable organic liquid cleaning solvent such as alcohols, ketones and such to remove organic deposits from the catalyst, followed by drying and calcining at elevated temperature to remove any remaining organic deposits from the catalyst, then treating the catalyst with an organo-metallic complex forming agent having ionization constant pK1 greater than about 2.5, such as glycolic acid and the like. The organic-metallic complex forming agent acts to break down large clusters of noble metal particles such as palladium (Pd) and redistributes the metal particles on the catalyst support such as alumina (Al2O3) in the same or other larger pores, so as to increase catalyst surface area and catalytic activity to provide a catalytic activity level at least 80% or even exceeding that of the fresh catalyst. This regeneration method is particularly useful for regenerating used supported palladium catalysts utilized for hydrogenation of ethyl anthraquinone (EAQ) for producing hydrogen peroxide (H2O2) product.
Owner:POROCEL INT LLC +1

Hydrotreating guard catalyst and application thereof

The invention discloses a hydrotreating guard catalyst for residual oil and application thereof. The catalyst has the advantages of large pore volume, large aperture, high porosity, rational pore distribution, larger external orifice, high pore canal penetrability and over 36 percent of 1,000nm pore canals, and is particularly applied to a hydrotreating method of a residual oil fixed bed to ensure that precipitated metals are uniformly deposited on the whole catalyst bed and impurities, namely vanadium and calcium, can be deposited inside the pore canals so as to improve the utilization ratio of pores and maintain long-period running.
Owner:CHINA PETROLEUM & CHEM CORP +1

Large pore volume composite mineral oxide beads, their preparation and their applications for adsorption and chromatography

The present invention provides porous mineral oxide beads which have large pore volumes and enhanced stability. The beads are based on a tetravalent metal oxide, such as zirconia, titania or hafnia. These highly porous beads are produced from a mixture of tetravalent mineral oxides, mineral pore inducing agents which are oxides or salts of trivalent metals, and optional binders. The porous mineral beads can be filled with a polymer gel and used for adsorption and chromatography applications.
Owner:PALL CORP

Process for isomerization dewaxing of hydrocarbon streams

A process for isomerization dewaxing of a hydrocarbon feed which includes contacting the hydrocarbon feed with a large pore size, small crystal size, crystalline molecular sieve and an intermediate pore size, small crystal size, crystalline molecular sieve to produce a dewaxed product with a reduced pour point and a reduced cloud point. In a preferred embodiment, the feed is contacted with the molecular sieves sequentially, first with the large pore sieve followed by the intermediate pore sieve.
Owner:EXXON RES & ENG CO

Ion exchange purification of mRNA

The current landscape for preparative chromatographic RNA purification uses reversed phase HPLC, but this technique presents many issues with process scale up and ion exchange for preparative purification has only been used for short RNAs. The invention provides preparative purification of RNA (e.g., mRNA) using ion (e.g., anion) exchange chromatography that allows for separation of longer RNAs up to 10,000 nucleotides in length via a scalable method. This method avoids problems with current techniques by using low pressure chromatography that is agreeable with existing equipment in cGMP commercial facilities, that uses aqueous-bases solutions as the mobile phase (rather than flammable of greater than 10 mg RNA / mL resin (e.g., using larger pore sorbents, >500 Angstroms, that display greater mRNA binding capacities), and that yields desired RNA salt forms for downstream formulation with no additional manipulation necessary (unlike ion pair reverse phase techniques).
Owner:MODERNATX INC

Catalyst carriers

The selectivity and activity of a silver-based olefin epoxidation catalyst is found to be a function of the pore size distribution in the alumina carrier on which it is deposited. Specifically it is found advantageous to provide a carrier which has a minimum of very large pores, (greater than 10 micrometers) and a water absorption of 35 to 55% and a surface area of at least 1.0 m2 / g. A method of making such carriers is also described.
Owner:SAINT-GOBAIN GLASS FRANCE

Upgradation of undesirable olefinic liquid hydrocarbon streams

A process for converting undesirable olefinic hydrocarbon streams to hydrogen and petrochemical feedstock e.g. light olefins in C2-C4 range and aromatics especially toluene and xylenes, which comprises simultaneous cracking and reforming at olefin rich hydrocarbons using a catalyst consisting of dehydrogenating metal components, shape selective zeolite components and large pore acidic components in different proportions in a circulating fluidized bed reactor-regenerator system having reactor temperature within 450-750 DEG C. and WHSV of 0.1-60 hour-1.
Owner:INDIAN OIL CORPORATION

Alumina carrier and preparation method thereof

The invention discloses an alumina carrier and a preparation method thereof. In the alumina carrier, aluminum hydroxide gel prepared by a molten salt supersolubilizing micelle method is taken as a raw material. After a surfactant and a hydrocarbon component contained in the gel are molded and baked, nano-alumina particles formed by removing water from the polymerized aluminum hydroxide still have a basic rod-shaped structure and are piled up in an unordered way so as to form a frame structure. The alumina carrier has the characteristics of large pore volume, large pore diameter, high porosity, large orifice on the outer surface and high pore canal penetrability. In particular for macromolecules, the alumina carrier prevents catalyst inactivation caused by the blocking of an ink bottle-shaped orifice, so that impurity deposition is increased, and the running period of a catalyst is prolonged. The alumina carrier can be applied to a catalytic reaction which contains a macromolecule reactant or a macromolecule product.
Owner:CHINA PETROLEUM & CHEM CORP +1

Large pore volume composite mineral oxide beads, their preparation and their applications for adsorption and chromatography

The present invention provides porous mineral oxide beads which have large pore volumes and enhanced stability. The beads are based on a tetravalent metal oxide, such as zirconia, titania or hafnia. These highly porous beads are produced from a mixture of tetravalent mineral oxides, mineral pore inducing agents which are oxides or salts of trivalent metals, and optional binders. The porous mineral beads can be filled with a polymer gel and used for adsorption and chromatography applications.
Owner:PALL CORP

Catalytic cracking catalyst and its prepn

InactiveCN1436835AHigh solid contentLarge single kettle capacityCatalytic crackingAdhesiveGasoline
The catalytic cracking catalyst contains medium and large pore alumina with average pore size not smaller than 3 nm 5-60 wt%, zeolite 5-60 wt%, adhesive 5-40 wt% and clay 5-85 wt%. The preparation process includes mixing the said materials, spraying, roasting, washing and drying. Compared with conventional catalyst, the catalyst has strengthened heavy oil converting capacity, obviously improved gasoline and coke selectivity and strengthened heavy metal nickel resistance.
Owner:PETROCHINA CO LTD

Two stage fluid catalytic cracking process for selectively producing C2 to C4 olefins

A process for selectively producing C2 to C4 olefins from feedstock such as a gas oil or resid. The feedstock is reacted in a first stage comprising a fluid catalytic cracking unit wherein it is converted in the presence of a mixture of conventional large pore zeolitic catalyst and a medium pore zeolitic catalyst to reaction products, including a naphtha boiling range stream. The naphtha boiling range stream is introduced into a second stage where it is contacted with a catalyst containing from about 10 to about 50 wt. % of a crystalline zeolite having an average pore diameter less than about 0.7 nanometers at reaction conditions which include temperatures ranging from about 500 to about 650° C. and a hydrocarbon partial pressure from about 10 to about 40 psia (about 70 to about 280 kPa).
Owner:EXXONMOBIL CHEM PAT INC

Method for preparing multilevel porous carbon base composite phase change material

The invention provides a method for preparing a multilevel porous carbon base composite phase change material, and belongs to the field of composite phase change materials. The method comprises the following steps: at first, preparing an organic metal skeleton material by using such methods as a solution method, a solvothermal method or a stirring synthesis method; with the organic metal skeleton material as a template, high temperature carbonizing under the protection of an inert gas, and changing the carbonizing temperature and the post treatment manner to obtain a multilevel porous carbon material with a super-large specific surface area and a super-large pore volume; selecting proper solvents according to different kinds of phase change core materials, preparing the phase change core materials to a solution, dispersing the porous carbon material into the solution, removing the solvent by such manners as heating, and meanwhile the phase change core materials are adsorbed and limited in the porous carbon material. The composite phase change material prepared by the method provided by the invention has good thermal storage property, can effectively avoid the leakage problem of the phase change core material, and has the advantages of excellent heat transfer property, good cycling stability and wide application range, and the process is simple and is suitable for large-scale production.
Owner:UNIV OF SCI & TECH BEIJING

Hydrocracking catalyst and preparation method thereof

The invention discloses a hydrocracking catalyst and a preparation method thereof. The catalyst is prepared by a carbonization method and is amorphous silica aluminum subject to hydro-thermal treatment. The amorphous silica aluminum prepared by the method has the characteristics of large specific surface, large pore volume, centralized pore distribution and appropriate acidity; an enough channel is provided for reactants, the reactants and products are convenient to enter / exit, the active ingredients of the carrier are greatly increased, and the distribution uniformity of the acid centre in the pore channel is improved; and moreover, as a larger space and a specific surface are provided for loading metal, the hydrogenated metal has higher dispersibility, the metal utilization rate is improved, and the catalyst provided by the invention has appropriate cracking activity as well as high hydrogenation activity and medium oil selectivity. The catalyst provided by the invention is particularly suitable for finishing the single-stage hydrocracking process once.
Owner:CHINA PETROLEUM & CHEM CORP +1

Calibration method for representing dense sandstone pore size distribution by adopting nuclear magnetic resonance

The invention relates to a calibration method for representing dense sandstone pore size distribution by adopting nuclear magnetic resonance; the method comprises the steps of measuring the rock porosity and the skeleton density; carrying out a low-temperature broken sample N2 absorption and desorption experiment, and carrying out a nuclear magnetic resonance test and a high pressure Hg injection test on a regular column sample in a saturated formation water state; converting pore volume obtained through N2 absorption into porosity components under different pore throat radiuses by using a capillary accumulated Hg inlet curve, and establishing a pore proportion summation curve by synthesizing low temperature N2-high pressure Hg injection; determining a best calibration coefficient by comparing the nuclear magnetic resonance pore proportion summation curves under the different C values to realize the conversion between nuclear magnetic resonance T2 spectrum and the pore throat radius; establishing a relation between parameters of the calibration coefficient C and a reflection pore-throat structure according to lithological characters; carrying out nuclear magnetic resonance conversion on dense sandstone reservoirs which are positioned in the same region and have the same lithological character. According to the method, the nuclear magnetic resonance T2 spectrum is calibrated by combining low temperature N2 absorption and a high pressure Hg injection experiment, and large pores, micropores and mesopores are calibrated, so that the distribution of different grades of pore sizes in dense sandstone can be effectively represented.
Owner:CHINA UNIV OF PETROLEUM (EAST CHINA)

Bulk phase catalyst and preparation method thereof

The invention discloses a bulk phase catalyst and a preparation method thereof. The bulk phase catalyst is prepared from an inorganic oxide precursor, a hydroxide gel and an active metal hydroxide gel serving as raw materials by molding and roasting. In the preparation process of the bulk phase catalyst, because the hydroxide gel contains a surfactant and hydrocarbon components, after the hydroxide gel is molded and roasted, the nano oxide particles formed by dehydrating the polymerized hydroxide also have a rod-shaped basic structure and pile up into a framework structure in an unordered mode. Therefore, the catalyst has the advantages of large pore volume, large pore diameter, high porosity, large orifices on the outer surface, good pore penetrability, and contribution to increasing the impurity deposition and prolonging the operation period of the catalyst.
Owner:CHINA PETROLEUM & CHEM CORP +1

Heavy oil hydrogenating treatment catalyst and preparation method thereof

The invention discloses a heavy oil hydrotreating catalyst and a preparation method thereof. The method for preparing the catalyst adopts a complete mixed kneading method; a carrier material comprises pseudo-boehmite glue powder and alumina powder; and an active metallic solution contains nonionic surfactant. The catalyst prepared by the method has the characteristics of large pore volume and pore diameter, proper specific surface area, even active metal dispersion and the like, and can be used in the processes of heavy oil hydrodemetalization, hydrodesulfurization and the like.
Owner:CHINA PETROLEUM & CHEM CORP +1

Fluid cat cracking with high olefins production

The propylene production of a fluid catalytic cracking unit employing a large pore zeolite cracking catalyst, produces more propylene by adding a naphtha cracking riser and a medium pore zeolite catalytic component to the unit, and recycling at least a portion of the naphtha crackate to the naphtha riser. The large pore size zeolite preferably comprises a USY zeolite and the medium pore size is preferably ZSM-5. Propylene production per unit of naphtha feed to the naphtha riser is maximized, by using the 60-300° F. naphtha crackate as the feed.
Owner:EXXON RES & ENG CO

Wall prosthesis that can be implanted in the center of a wound to reinforce abdominal wall closure

The invention relates to a prosthesis that can be implanted in the centre of wall wound scarring. The inventive prosthesis, which is intended for use in abdominal surgery, is provided with a geometric shape in the form of sheets that converge in dihedral angles. The sheets or planes are made from a synthetic biotolerated material in porous form with large pores. One of said planes is inserted into the centre of the scarring between the two aponeurotic surfaces to be joined. The other plane(s) of the prosthesis, which is perpendicular to the aforementioned plane, is arranged so as to overlap the aponeurotic edges of the edge of the section. The proliferation obtained around the prosthesis, in the scarring centre and close thereto, provides stress resistance greater than that obtained in standard closures, thereby greatly reducing the risk of hernias caused by a badly healed wound.
Owner:BUJAN VARELA JULIA +2

Separator including porous coating layer, method for manufacturing the separator and electrochemical device including the separator

A separator includes a non-woven fabric substrate having pores, fine thermoplastic powder located inside the pores of the non-woven fabric substrate, and a porous coating layer disposed on at least one surface of the non-woven fabric substrate. The fine thermoplastic powder has an average diameter smaller than that of the pores and a melting point lower than the melting or decomposition point of the non-woven fabric substrate. The porous coating layer includes a mixture of inorganic particles and a binder polymer whose melting point is higher than the melting or decomposition point of the fine thermoplastic powder. In the porous coating layer, the inorganic particles are fixedly connected to each other by the binder polymer and the pores are formed by interstitial volumes between the inorganic particles. Previous filling of the large pores of the non-woven fabric substrate with the fine thermoplastic powder makes the porous coating layer uniform.
Owner:LG ENERGY SOLUTION LTD +1

Hybrid wicking materials for use in high performance heat pipes

The present invention relates to hybrid wicking materials for use in high performance heat pipes and other fields where a bi-modal distribution of pore sizes offers advantages over a homogeneous monolithic porous structure. In one aspect, the invention provides a wicking material for use in heat pipes. This wick is comprised of sintered metal powder formed on a foam, felt, screen or mesh metal substrate. A fine pore structure is formed by the metal powder while the substrate is comprised of large pores. The large pores are several times, preferably five times to several orders of magnitude larger in size than the small pores. The sintered powder metal and the metal substrate may be made of nickel, copper, molybdenum, niobium, aluminium, iron, cobalt, titanium and alloys based on these metals, and combinations thereof. In another aspect, the invention provides a wicking material for use in heat pipes comprised of a hybrid wick structure with axial and radial variations in pore size for optimized performance under both horizontal and against gravity orientations.
Owner:HUANG XIAO +1

Porous cement road surface made from polymer modified cement and a construction method thereof

A porous concrete road surface structure made from polymer modified cement and a construction method thereof are disclosed. The structure successively comprises a bottom layer, a bonding layer, a porous concrete layer and a surface treatment layer. The bonding layer is located on the bottom layer, and the porous concrete layer on the bonding layer is prepared through paving, leveling and jolting a composition mixed from broken stone, sand and a slurry mixture of polymer modified cement. The addition of polymer promotes bonding of granular materials with the slurry mixture tightly, the use of the bonding layer makes the road surface structure and the bottom layer form an integral body, and the road surface structure has high strength, good crack resistance, water resistance, ageing resistance and corrosion resistance; the use of an intermittent or single graded of particles results in large pores, makes the road surface water-penetrating, decreases noise and amount of the polymer; and, the surface treatment can improve markedly surface properties and its use according to the application can make the porous concrete layer has rigid or flexible characteristic. The porous concrete road surface can be paved, leveled and jolted by paving machine or manual labor.
Owner:YI ZHIJIAN

Preparation method of large-pore-volume and high-strength aluminum oxide of catalyst for preparing ethylene from ethanol

The invention discloses a preparation method of large-pore-volume and high-strength aluminum oxide of a catalyst for preparing ethylene from ethanol. The preparation method is characterized by comprising the following steps: (1) drying and crushing aluminum hydroxide trihydrate, and carrying out flash evaporation on aluminum hydroxide trihydrate for rapid dehydration; (2) adequately mixing raw powder and a pore-enlarging agent in a mixing machine so as to obtain a mixed material; (3) adding the mixed material into a kneading machine, and kneading; (4) adding the kneaded material into a strip extruder, and extruding the kneaded material to obtain a strip material; (5) adding the cut strip material into a drying room, and carrying out forced curing; (6) adding the cured strip material into an activating oven, and roasting the strip material; (7) washing the roasted strip material in a washing tank; and (8) adding the washed strip material into the activating oven, and roasting the strip material again. The preparation method has the beneficial effects that by improving the process flow and selecting the pore-enlarging agent, the physical and chemical properties of the catalyst for preparing ethylene from ethanol are greatly improved, and the conversion rate and selectivity of process for preparing ethylene from ethanol are increased; the catalyst can resist the repeated scouring of a fluidized bed, so that the service life of the catalyst is greatly prolonged.
Owner:温州精晶氧化铝有限公司 +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products