Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

61results about "Carbamic acid" patented technology

Gas-phase functionalization of carbon nanotubes

ActiveUS20080296537A1Remarkable and mechanical and optical propertyMaterial nanotechnologyAluminium compoundsGas phaseDesorption
In a method for functionalizing a carbon nanotube surface, the nanotube surface is exposed to at least one vapor including at least one functionalization species that non-covalently bonds to the nanotube surface, providing chemically functional groups at the nanotube surface, producing a functionalized nanotube surface. A functionalized nanotube surface can be exposed to at least one vapor stabilization species that reacts with the functionalization layer to form a stabilization layer that stabilizes the functionalization layer against desorption from the nanotube surface while providing chemically functional groups at the nanotube surface, producing a stabilized nanotube surface. The stabilized nanotube surface can be exposed to at least one material layer precursor species that deposits a material layer on the stabilized nanotube surface.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE

Systems and methods for integrated ammonia-urea process

Systems and methods for producing urea are provided. A method for producing urea can include exchanging heat from a syngas comprising hydrogen and carbon dioxide to a urea solution comprising urea and ammonium carbamate. The heat transferred can be sufficient to decompose at least a portion of the ammonium carbamate. In one or more embodiments, the syngas can be reacted with liquid ammonia to provide a carbon dioxide lean syngas and an ammonium carbamate solution. The ammonium carbamate solution can be heated to a temperature of about 180° C. or more. At least a portion of the ammonium carbamate in the heated ammonium carbamate solution can be dehydrated to provide the urea solution.
Owner:KELLOGG BROWN & ROOT LLC

Air battery catalyst and air battery using the same

Catalysts are provided which can catalyze both the oxygen reduction during the discharge of a secondary air battery and the oxygen production in the recharging of the battery and which are stable at a high potential in the recharging. The invention has been accomplished based on the finding that a catalyst including an oxycarbonitride of a specific transition metal selected from, for example, titanium, zirconium, hafnium, vanadium, niobium and tantalum can catalyze both the oxygen reduction during the discharge of a secondary air battery and the oxygen production in the recharging of the battery and is also stable at a high potential in the recharging.
Owner:SHOWA DENKO KK

Process for producing a fuel cell electrode catalyst, fuel cell electrode catalyst and use thereof

Provided is a process for producing a fuel cell electrode catalyst with high catalytic activity that is alternative to a noble metal catalyst, through a heat treatment at a relatively low temperature. A process for producing a fuel cell electrode catalyst includes a step (I) of obtaining a catalyst precursor, including a step (Ia) of mixing at least a metal compound (1), a nitrogen-containing organic compound (2), and a fluorine-containing compound (3), and a step (II) of heat-treating the catalyst precursor at a temperature of 500 to 1300° C. to obtain an electrode catalyst, a portion or the entirety of the metal compound (1) being a compound containing an atom of a metal element M1 selected from the group consisting of iron, cobalt, chromium, nickel, copper, zinc, titanium, niobium and zirconium, and at least one of the compounds (1), (2) and (3) containing an oxygen atom.
Owner:SHOWA DENKO KK

Apparatus for Processing Highly Corrosive Agents

An apparatus for treating highly corrosive agents comprises a tube bundle (14) heat exchanger (10), structured to carry out a heat exchange between two fluids one of which is highly corrosive and flowing inside of said tube bundle (14).
Owner:CASALE SA

Method for producing fuel cell catalyst, fuel cell catalyst, and uses thereof

A method for producing a fuel cell catalyst containing a metal oxycarbonitride, the method including: a step of producing a metal oxycarbonitride by heating a metal carbonitride in an inert gas containing oxygen gas; and a step of bringing the metal oxycarbonitride into contact with an acidic solution.
Owner:SHOWA DENKO KK

Method for Producing Chlorosulfonyl Isocyanate

A method for producing chlorosulfonyl isocyanate by reaction of sulfur trioxide with cyanogen chloride, wherein chlorosulfonyl isocyanate or a solution including chlorosulfonyl isocyanate is used as a reaction solvent, sulfur trioxide and cyanogen chloride which are respectively diluted with the chlorosulfonyl isocyanate or the solution including chlorosulfonyl isocyanate are added at the same time to a reaction system in an almost equimolar amount under reflux. By the production method of present invention, chlorosulfonyl isocyanate can be produced from sulfur trioxide and cyanogen chloride in which the yield of the chlorosulfonyl isocyanate is high, the method has excellent operability, number of equipments is reduced, and time for controlling the temperature is saved.
Owner:NIPPON SODA CO LTD

Titanium carbide powder and titanium carbide-ceramics composite powder and method for production thereof, and sintered compact from the titanium carbide powder and sintered compact from the titanium carbide/ceramics composite powders and method for production thereof

Disclosed is a highly-pure fine titanium carbide powder having a maximum particle size of 100 nm or less and containing metals except titanium in an amount of 0.05 wt % or less and free carbon in an amount of 0.5 wt % or less. The powder has a NaCl-type crystal structure, and a composition represented by TiCxOyNz, wherein X, Y and Z satisfy the relations: 0.5≦X≦1.0; 0≦Y≦0.3; 0≦Z≦0.2; and 0.5≦X+Y+Z≦1.0.) The powder is produced by: dissolving an organic substance serving as a carbon source in a solvent to prepare a liquid, wherein the organic substance contains at least one OH or COOH group which is a functional group coordinatable to titanium of titanium alkoxide, and no element except C, H, N and O; mixing titanium alkoxide with the liquid to satisfy the following relation: 0.7≦α≦1.0 (wherein α is a molar ratio of the carbon source to the titanium alkoxide), so as to obtain a precursor solution; and subjecting a product in the precursor solution to a heat treatment in a non-oxidizing atmosphere or a vacuum atmosphere at a temperature of 1050 to 1500° C. The present invention can provide fine titanium carbide powders with nano-scale particle sizes, which are free of inorganic impurities, such as titanium oxide and metal, low in free carbon, and effective in enhancing characteristics of a titanium carbide-ceramics composite sintered body.
Owner:FUKUOKA PREFECTURAL GOVERNMENT +1

Continuous method and apparatus for functionalizing carbon nanotube

The present invention relates to a continuous method and apparatus for functionalizing a carbon nanotube, and more specifically, to a continuous method and apparatus for functionalizing a carbon nanotube including preparing a functionalized product by functionalizing a carbon nanotube solution including nitro compound according to the following Chemical Formula 1 and carbon nanotube mixture including an oxidizer for forming nitric acid under subcritical water or supercritical water condition of 50 to 400 atm and a continuous method and apparatus for functionalizing a carbon nanotube under subcritical water or supercritical water condition using nitro compound without using strong acids or strong bases.R—(NOx)y   [Chemical Formula 1]wherein Chemical Formula 1, R is alkyl group of C1 to C7 or aryl group of C6 to C20 and x and y are integers of 1 to 3 independently.
Owner:HANWHA CHEMICAL CORPORATION
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products