Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2384 results about "Isophthalic acid" patented technology

Isophthalic acid is an organic compound with the formula C₆H₄(CO₂H)₂. This colorless solid is an isomer of phthalic acid and terephthalic acid. The main industrial uses of purified isophthalic acid (PIA) are for the production of polyethylene terephthalate (PET) resin and for the production of unsaturated polyester resin (UPR) and other types of coating resins.

Articles derived from compositions containing modified polybutylene terephthalate (PBT) random copolymers derived from polyethylene terephthalate (PET)

Compositions of matter including articles derived from (a) from 5 to 99.99 wt % of a modified polybutylene terephthalate random copolymer that (1) is derived from polyethylene terephthalate and (2) contains a at least one residue derived from polyethylene terephthalate selected from the group consisting of antimony, germanium, diethylene glycol groups, isophthalic acid groups, cis isomer of cyclohexane dimethanol, trans isomer of cyclohexane dimethanol, sodium benzoate, alkali salts, napthalane dicarboxylic acids, 1,3-propane diols, cobalt, cobalt-containing compounds, and combinations thereof, and (b) from 0.01 to 95 wt. % of a member selected from the group consisting of (1) fillers, (2) a carboxy reactive component, (3) polyethyelene terephthalate, (4) a component including a polycarbonate and an impact modifier. The articles may be derived from various conversion processes, e.g., injection molding processes, extrusion processes, thermoforming processes, melt-blown process.
Owner:SHPP GLOBAL TECH BV

Method and apparatus for preparing purified terephthalic acid and isophthalic acid from mixed xylenes

A method and apparatus for preparing purified terephthalic acid and, optionally, isophthalic acid from mixed xylenes. The method of the present invention purifies the oxidation reactor effluent containing a mixture of terephthalic acid and isophthalic acid as well as minor amounts of 4-carboxybenzaldehyde (4-CBA), 3-carboxybenzaldehyde (3-CBA), and toluic acid isomers, to produce purified terephthalic acid and, optionally, purified isophthalic acid in an integrated process.
Owner:GTC TECHNOLOGY INC

Polyester coil coating

A coil coating composition producing a coil coating with excellent properties at a lower peak metal temperature includes (a) a first, branched polyester prepared by condensation of a polyol component consisting essentially of a flexibilizing diol, 2-methyl-1,3-propanediol, and a polyol having at least three hydroxyl groups and an acid component consisting essentially of isophthalic acid; (b) a second, essentially linear polyester prepared by condensation of a polyol component consisting essentially of a flexibilizing diol and 2-methyl-1,3-propanediol and an acid component consisting essentially of isophthalic acid; and (c) a crosslinking agent.
Owner:PPG IND OHIO INC

Method of Making Polybutylene Terephthalate and Compositions and Articles Comprising the Same

A process for making modified polybutylene terephthalate random copolymers from a polyethylene terephthalate component includes reacting an oligomeric diol component selected from the group consisting of bis(hydroxybutyl)terephthalate, bis(hydroxybutyl)isophthalate, hydroxybutyl-hydroxyethyl terephthalate, and combinations thereof to a reactor; (i) a polyethylene terephthalate component selected from the group consisting of polyethylene terephthalate and polyethylene terephthalate copolymers with (ii) a diol component selected from the group consisting of 1,4-butanediol, ethylene glycol, propylene glycol, and combinations thereof, in the reactor under conditions sufficient to depolymerize the polyethylene terephthalate component into a first molten mixture; combining the first molten mixture is combined with 1,4-butanediol under conditions to form a second molten mixture; and placing the second molten mixture under conditions sufficient to produce the modified polybutylene terephthalate random copolymers. Also described are compositions and articles made from the process.
Owner:SHPP GLOBAL TECH BV

Transparent polyamide molding materials having improved transparency, resistance to chemicals and high permanent fatigue strength

ActiveUS6943231B2High transparencyHigh permanent fatigue strengthNon-fibrous pulp additionFramesPolyamideCarboxylic acid
Transparent polyamide molding materials are provided which are characterized in that they have a melting enthalpy between 0 and 12 J/g and the polyamides are constituted of
100 mole-% of a diamine mixture having 10-70 mole-% of PACM [bis-(4-amino-cyclohexyl)-methane] with less than 50 wt.-% of trans,trans-isomer and 90-30 mole-% of MACM [bis-(4-amino-3-methyl-cyclohexyl)-methane], wherein, optionally, 0-10 mole-% can be replaced by other aliphatic diamines having 6 to 12 C atoms, cycloaliphatic, alkyl-substituted cycloaliphatic, branched aliphatic diamines or multiamines having 3 to 12 amino groups or mixtures thereof, and
100 mole-% of long-chain aliphatic dicarboxylic acids having 8 to 14 C atoms or mixtures of these dicarboxylic acids, wherein 0-10 mole-% can be replaced by other aromatic or cycloaliphatic dicarboxylic acids having 8 to 16 C atoms, which are especially selected from the group consisting of isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, cyclohexanedicarboxylic acid or mixtures thereof, and
wherein, optionally, 0-10 mole-% of the other long-chain aliphatic diamines and 0-10 mole-% of the other long-chain aliphatic dicarboxylic acids can be added as 0-20 mole-% of ω-aminocarboxylic acids having 6 to 12 C atoms or lactams having 6 to 12 C atoms.
Further, methods for producing the polyamide moulding materials and methods for producing and further treating moulded articles from the polyamide moulding materials are provided. Especially, the present invention relates to glasses and lenses which are obtainable from the polyamide moulding materials.
Owner:EMS CHEM AG

Method of purifying aromatic dicarboxylic acids

An aromatic dicarboxylic acid is purified by oxidizing m-xylene or p-xylene to produce crude isophthalic acid or crude terephthalic acid, respectively. The products of the oxidizing step are hydrogenated in the presence of a palladium catalyst. Carbon monoxide is introduced during the hydrogenation step. The palladium catalyst is provided on a carbon substrate. The products of the oxidizing step are dissolved in a solvent, which may be water, prior to the hydrogenation step. The products of the oxidizing step may be dissolved at an elevated temperature, above the normal boiling point of the solvent. The oxidation step produces isophthalic acid, 3-carboxybenzaldehyde and fluorenones in the case of oxidizing m-xylene and produces terephthalic acid, 4-carboxybenzaldehyde and fluorenones in the case of oxidizing p-xylene. It may be helpful to monitor the disappearance of 3-carboxybenzaldehyde in the case of oxidizing m-xylene and 4-carboxybenzaldehyde in the case of oxidizing pxylene, and reducing the amount of carbon monoxide when the rate of disappearance is below a predetermined minimum. After the hydrogenation step, the isophthalic acid or terephthalic acid may be crystallized. The carbon monoxide may be maintained at a concentration of 100 to 500 ppm based on added hydrogen and carbon monoxide. Other aromatic dicarboxylic acids may also purified by this procedure.
Owner:GRUPO PETROTEMEX DE C V

Thermoplastic composition, method of making, and articles formed therefrom

A thermoplastic composition comprises a polyester-polycarbonate polymer comprising isophthalate-terephthalate-resorcinol ester units and carbonate units, and a poly(alkylene ester) comprising ethylene terephthalate units, 1,4-cyclohexyldimethylene terephthalate units, or a combination of ethylene terephthalate units and 1,4-cyclohexyldimethylene terephthalate units, wherein the sum of the mole percentage values of isophthalate-terephthalate-resorcinol ester units in the polyester-polycarbonate polymer, and of the mole percentage values of 1,4-cyclohexanedimethylene terephthalate units in the poly(alkylene ester) polymer, is a value greater than 40. In other embodiments, polycarbonate may be included. Also disclosed is a method for forming the thermoplastic compositions, and articles prepared therefrom.
Owner:SABIC INNOVATIVE PLASTICS IP BV

Plasticizing and modifying method for polylactic acid

The invention provides a toughening modification method of polylactic acid. The polylactic acid and toughening modifier are mixed according to the proportion and are dried to lead the moisture content percentage to be lower than 50 ppm, then a melting extrusion method is adopted to mould the polylactic acid and the toughening modifier into a product, wherein, the toughening modifier is copolyester with melting point in 125 to 200 DEG C, in particular is the copolyester obtained by adopting isophthalic acid, hexanediamine, 1,4-butanediol, etc. as third monomers to modify PET. When blending, the quantity of the copolyester accounts for 1 to 20 Wt percent of the quantity of the polylactic acid, the melting extrusion processing temperature is 180 to 240 DEG C, and the breaking elongation of the obtained injection molding spline is improved by 10 to 300 percent. The invention greatly makes up for the disadvantage of deficient toughness of PLA, so as to lead the processing property to be improved greatly.
Owner:中国石化仪征化纤股份有限公司

Filament low-melting-point polyester fiber and preparation method thereof

The invention relates to a filament low-melting-point polyester fiber and a preparation method thereof. The filament low-melting-point polyester fiber is in a skin-core structure, a skin layer is made of low-melting-point polyester; a core layer is made of PET (polyethylene terephthalate); the low-melting-point polyester consists of a terephthalic acid chain segment, an isophthalic acid chain segment, an ethylene glycol chain segment, a diethylene glycol chain segment, a molecular weight modifier chain segment and a 1, 12-Dodecanediol chain segment containing branched chains; a molecular weight modifier corresponding to the molecular weight modifier chain segment is specifically a monoacid series or a diacid series; the preparation method of the filament low-melting-point polyester fiber comprises the following steps: polymerization of the low-melting-point polyester and skin-core composite spinning, so as to obtain the filament low-melting-point polyester fiber. The prepared filament low-melting-point polyester fiber has the advantages that the initial melting point is reduced, the melting speed is increased, the polyester fiber is immediately melted at the corresponding temperature, and the melting effect is good.
Owner:扬州富威尔复合材料有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products