Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

15751 results about "Effluent" patented technology

Effluent is an outflowing of water or gas to a natural body of water, from a structure such as a wastewater treatment plant, sewer pipe, or industrial outfall. Effluent, in engineering, is the stream exiting a chemical reactor.

Selective etch of silicon by way of metastable hydrogen termination

Methods of etching exposed silicon on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor and a hydrogen-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the exposed regions of silicon. The plasmas effluents react with the patterned heterogeneous structures to selectively remove silicon while very slowly removing other exposed materials. The silicon selectivity results, in part, from a preponderance of hydrogen-containing precursor in the remote plasma which hydrogen terminates surfaces on the patterned heterogeneous structures. A much lower flow of the fluorine-containing precursor progressively substitutes fluorine for hydrogen on the hydrogen-terminated silicon thereby selectively removing silicon from exposed regions of silicon. The methods may be used to selectively remove silicon far faster than silicon oxide, silicon nitride and a variety of metal-containing materials.
Owner:APPLIED MATERIALS INC

Flowable silicon-and-carbon-containing layers for semiconductor processing

InactiveUS20130217239A1Decreases beneficially low wet etch rateReduce hydrogen contentSemiconductor/solid-state device manufacturingCarbon layerHydrogen
Methods are described for forming and curing a gapfill silicon-and-carbon-containing layer on a semiconductor substrate. The silicon and carbon constituents may come from a silicon-and-carbon-containing precursor excited by a radical hydrogen precursor that has been activated in a remote plasma region. Exemplary precursors include 1,3,5-trisilapentane (H3Si—CH2—SiH2—CH2—SiH3) as the silicon-and-carbon-containing precursor and hydrogen (H2) as the hydrogen-containing precursor. The hydrogen-containing precursor may also be a hydrocarbon, such as acetylene (C2H2) or ethylene (C2H4). The hydrogen-containing precursor is passed through a remote plasma region to form plasma effluents (the radical hydrogen precursor) which are flowed into the substrate processing region. When the silicon-and-carbon-containing precursor combines with the plasma effluents in the substrate processing region, they form a flowable silicon-carbon-and-hydrogen-containing layer on the semiconductor substrate.
Owner:APPLIED MATERIALS INC

Method for processing lignocellulosic material

A method wherein lignocellulosic biomass materials are converted into combustible fuel products. In particular, the method is a continuous process, involving wet oxidation or steam explosion, for fermentatively converting such biomass materials into ethanol using a process design that permits all or part of the process water from the ethanol fermentation process to be recycled to reduce the consumption of process water. The effluent from the ethanol fermentation step may be subjected to an anaerobic fermentation step generating methane and a water effluent in which the amount of potentially inhibitory substances is at a sub-inhibitory level, which in turn permits all or part of the effluent water from the anaerobic fermentation step to be recycled into the process.
Owner:POET RES INC

Remotely-excited fluorine and water vapor etch

A method of etching exposed silicon oxide on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents combine with water vapor. The chemical reaction resulting from the combination produces reactants which etch the patterned heterogeneous structures to produce, in embodiments, a thin residual structure exhibiting little deformation. The methods may be used to conformally trim silicon oxide while removing little or no silicon, polysilicon, silicon nitride, titanium or titanium nitride. In an exemplary embodiment, the etch processes described herein have been found to remove mold oxide around a thin cylindrical conducting structure without causing the cylindrical structure to significantly deform.
Owner:APPLIED MATERIALS INC

Catalytic multi-stage process for hydroconversion and refining hydrocarbon feeds

A multi-stage catalytic hydrogenation and hydroconversion process for heavy hydrocarbon feed materials such as coal, heavy petroleum fractions, and plastic waste materials. In the process, the feedstock is reacted in a first-stage, back-mixed catalytic reactor with a highly dispersed iron-based catalyst having a powder, gel or liquid form. The reactor effluent is pressure-reduced, vapors and light distillate fractions are removed overhead, and the heavier liquid fraction is fed to a second stage back-mixed catalytic reactor. The first and second stage catalytic reactors are operated at 700-850.degree. F. temperature, 1000-3500 psig hydrogen partial pressure and 20-80 lb. / hr per ft.sup.3 reactor space velocity. The vapor and light distillates liquid fractions removed from both the first and second stage reactor effluent streams are combined and passed to an in-line, fixed-bed catalytic hydrotreater for heteroatom removal and for producing high quality naphtha and mid-distillate or a full-range distillate product. The remaining separator bottoms liquid fractions are distilled at successive atmospheric and vacuum pressures, low and intermediate-boiling hydrocarbon liquid products are withdrawn, and heavier distillate fractions are recycled and further upgraded to provide additional low-boiling hydrocarbon liquid products. This catalytic multistage hydrogenation process provides improved flexibility for hydroprocessing the various carbonaceous feedstocks and adjusting to desired product structures and for improved economy of operations.
Owner:HEADWATERS CTL

Dry-etch for silicon-and-carbon-containing films

InactiveUS20130034968A1Reduces and substantially eliminates numberMaterial removalSemiconductor/solid-state device manufacturingRemote plasmaSilicon oxide
A method of etching exposed silicon-and-carbon-containing material on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor and an oxygen-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the exposed regions of silicon-and-carbon-containing material. The plasmas effluents react with the patterned heterogeneous structures to selectively remove silicon-and-carbon-containing material from the exposed silicon-and-carbon-containing material regions while very slowly removing other exposed materials. The silicon-and-carbon-containing material selectivity results partly from the presence of an ion suppression element positioned between the remote plasma and the substrate processing region. The ion suppression element reduces or substantially eliminates the number of ionically-charged species that reach the substrate. The methods may be used to selectively remove silicon-and-carbon-containing material at more than twenty times the rate of silicon oxide.
Owner:APPLIED MATERIALS INC

Selective suppression of dry-etch rate of materials containing both silicon and nitrogen

A method of suppressing the etch rate for exposed silicon-and-nitrogen-containing material on patterned heterogeneous structures is described and includes a two stage remote plasma etch. The etch selectivity of silicon relative to silicon nitride and other silicon-and-nitrogen-containing material is increased using the method. The first stage of the remote plasma etch reacts plasma effluents with the patterned heterogeneous structures to form protective solid by-product on the silicon-and-nitrogen-containing material. The plasma effluents of the first stage are formed from a remote plasma of a combination of precursors, including nitrogen trifluoride and hydrogen (H2). The second stage of the remote plasma etch also reacts plasma effluents with the patterned heterogeneous structures to selectively remove material which lacks the protective solid by-product. The plasma effluents of the second stage are formed from a remote plasma of a fluorine-containing precursor.
Owner:APPLIED MATERIALS INC

Selective suppression of dry-etch rate of materials containing both silicon and oxygen

A method of suppressing the etch rate for exposed silicon-and-oxygen-containing material on patterned heterogeneous structures is described and includes a two stage remote plasma etch. Examples of materials whose selectivity is increased using this technique include silicon nitride and silicon. The first stage of the remote plasma etch reacts plasma effluents with the patterned heterogeneous structures to form protective solid by-product on the silicon-and-oxygen-containing material. The plasma effluents of the first stage are formed from a remote plasma of a combination of precursors, including a nitrogen-containing precursor and a hydrogen-containing precursor. The second stage of the remote plasma etch also reacts plasma effluents with the patterned heterogeneous structures to selectively remove material which lacks the protective solid by-product. The plasma effluents of the second stage are formed from a remote plasma of a fluorine-containing precursor.
Owner:APPLIED MATERIALS INC

Dry-etch selectivity

A method of etching exposed patterned heterogeneous structures is described and includes a remote plasma etch formed from a reactive precursor. The plasma power is pulsed rather than left on continuously. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents selectively remove one material faster than another. The etch selectivity results from the pulsing of the plasma power to the remote plasma region, which has been found to suppress the number of ionically-charged species that reach the substrate. The etch selectivity may also result from the presence of an ion suppression element positioned between a portion of the remote plasma and the substrate processing region.
Owner:APPLIED MATERIALS INC

Flowable carbon film by FCVD hardware using remote plasma PECVD

Embodiments of the present invention generally relate to methods for forming a flowable carbon-containing film on a substrate. In one embodiment, an oxygen-containing gas is flowed into a remote plasma region to produce oxygen-containing plasma effluents, and a carbon-containing gas is combined with the oxygen-containing plasma effluents in a substrate processing region which contains the substrate. A carbon-containing film is formed in trenches which are formed on the substrate and a low K dielectric material is deposited on the carbon-containing film in the trenches. The carbon-containing film is decomposed by an UV treatment and airgaps are formed in the trenches under the low K dielectric material.
Owner:APPLIED MATERIALS INC

Selective titanium nitride removal

Methods are described herein for selectively etching titanium nitride relative to dielectric films, which may include, for example, alternative metals and metal oxides lacking in titanium and / or silicon-containing films (e.g. silicon oxide, silicon carbon nitride and low-K dielectric films). The methods include a remote plasma etch formed from a chlorine-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the titanium nitride. The plasma effluents react with exposed surfaces and selectively remove titanium nitride while very slowly removing the other exposed materials. The substrate processing region may also contain a plasma to facilitate breaking through any titanium oxide layer present on the titanium nitride. The plasma in the substrate processing region may be gently biased relative to the substrate to enhance removal rate of the titanium oxide layer.
Owner:APPLIED MATERIALS INC

Selective titanium nitride removal

Methods are described herein for selectively etching titanium nitride relative to dielectric films, which may include, for example, alternative metals and metal oxides lacking in titanium and / or silicon-containing films (e.g. silicon oxide, silicon carbon nitride and low-K dielectric films). The methods include a remote plasma etch formed from a chlorine-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the titanium nitride. The plasma effluents react with exposed surfaces and selectively remove titanium nitride while very slowly removing the other exposed materials. The substrate processing region may also contain a plasma to facilitate breaking through any titanium oxide layer present on the titanium nitride. The plasma in the substrate processing region may be gently biased relative to the substrate to enhance removal rate of the titanium oxide layer.
Owner:APPLIED MATERIALS INC

Differential silicon oxide etch

A method of etching exposed silicon oxide on patterned heterogeneous structures is described and includes a gas phase etch created from a remote plasma etch. The remote plasma excites a fluorine-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents combine with water vapor. Reactants thereby produced etch the patterned heterogeneous structures to remove two separate regions of differing silicon oxide at different etch rates. The methods may be used to remove low density silicon oxide while removing less high density silicon oxide.
Owner:APPLIED MATERIALS INC

Non-local plasma oxide etch

ActiveUS20140166617A1High titanium oxide selectivityElectric discharge tubesDecorative surface effectsRemote plasmaHydrogen
A method of etching exposed titanium oxide on heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor. Plasma effluents from the remote plasma are flawed into a substrate processing region where the plasma effluents may combine with a nitrogen-containing precursor such as an amine (N:) containing precursor. Reactants thereby produced etch, the patterned heterogeneous structures with high titanium oxide selectivity while the substrate is at elevated temperature. Titanium oxide etch may alternatively involve supplying a fluorine-containing precursor and a source of nitrogen-and-hydrogen-containing precursor to the remote plasma. The methods may be used to remove titanium oxide while removing little or no low-K dielectric, polysilicon, silicon nitride or titanium nitride.
Owner:APPLIED MATERIALS INC

Delicate dry clean

A method of selectively removing fluorocarbon layers from overlying low-k dielectric material is described. These protective plasma treatments (PPT) are delicate alternatives to traditional post-etch treatments (PET). The method includes sequential exposure to (1) a local plasma formed from a silicon-fluorine precursor followed by (2) an exposure to plasma effluents formed in a remote plasma from a fluorine-containing precursor. The remote plasma etch (2) has been found to be highly selective of the residual material following the local plasma silicon-fluorine exposure. The sequential process (1)-(2) avoids exposing the low-k dielectric material to oxygen which would undesirably increase its dielectric constant.
Owner:APPLIED MATERIALS INC

Silicon-carbon-nitride selective etch

A method of etching exposed silicon-nitrogen-and-carbon-containing material on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor and an oxygen-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the exposed regions of silicon-nitrogen-and-carbon-containing material. The plasma effluents react with the patterned heterogeneous structures to selectively remove silicon-nitrogen-and-carbon-containing material from the exposed silicon-nitrogen-and-carbon-containing material regions while very slowly removing selected other exposed materials. The silicon-nitrogen-and-carbon-containing material selectivity results partly from the presence of an ion suppression element positioned between the remote plasma and the substrate processing region. The ion suppression element controls the number of ionically-charged species that reach the substrate. The methods may be used to selectively remove silicon-nitrogen-and-carbon-containing material at a faster rate than exposed silicon oxide or exposed silicon nitride.
Owner:APPLIED MATERIALS INC

Dry-etch for selective oxidation removal

Methods of selectively etching tungsten oxide relative to tungsten, silicon oxide, silicon nitride and / or titanium nitride are described. The methods include a remote plasma etch formed from a fluorine-containing precursor and / or hydrogen (H2). Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the tungsten oxide. The plasmas effluents react with exposed surfaces and selectively remove tungsten oxide while very slowly removing other exposed materials. In some embodiments, the tungsten oxide selectivity results partly from the presence of an ion suppression element positioned between the remote plasma and the substrate processing region. The ion suppression element reduces or substantially eliminates the number of ionically-charged species that reach the substrate.
Owner:APPLIED MATERIALS INC

Range hood

A hood for a cook top is controlled preferably by an electronic controller through a touch keypad. The hood has front and side walls and attaches to a back wall. It has an internal cavity and structure to restrict airflow out of the hood. The structure also creates an air curtain. The curtain traps and moves heated air and effluents upwardly off of the cook top. At least one blower is located near the cook top for moving the air and effluents. The hood may also have at least one: filter, sensor, duct, lighting fixture, vent, display, and circuit board.
Owner:HAIER US APPLIANCE SOLUTIONS INC D B A GE APPLIANCES

Selective etch of silicon by way of metastable hydrogen termination

ActiveUS8808563B2Easy to disassembleReduces and substantially eliminates numberElectric discharge tubesDecorative surface effectsRemote plasmaHydrogen
Methods of etching exposed silicon on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor and a hydrogen-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the exposed regions of silicon. The plasmas effluents react with the patterned heterogeneous structures to selectively remove silicon while very slowly removing other exposed materials. The silicon selectivity results, in part, from a preponderance of hydrogen-containing precursor in the remote plasma which hydrogen terminates surfaces on the patterned heterogeneous structures. A much lower flow of the fluorine-containing precursor progressively substitutes fluorine for hydrogen on the hydrogen-terminated silicon thereby selectively removing silicon from exposed regions of silicon. The methods may be used to selectively remove silicon far faster than silicon oxide, silicon nitride and a variety of metal-containing materials.
Owner:APPLIED MATERIALS INC

Remotely-excited fluorine and water vapor etch

A method of etching exposed silicon oxide on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents combine with water vapor. The chemical reaction resulting from the combination produces reactants which etch the patterned heterogeneous structures to produce, in embodiments, a thin residual structure exhibiting little deformation. The methods may be used to conformally trim silicon oxide while removing little or no silicon, polysilicon, silicon nitride, titanium or titanium nitride. In an exemplary embodiment, the etch processes described herein have been found to remove mold oxide around a thin cylindrical conducting structure without causing the cylindrical structure to significantly deform.
Owner:APPLIED MATERIALS INC

Delicate dry clean

A method of selectively removing fluorocarbon layers from overlying low-k dielectric material is described. These protective plasma treatments (PPT) are delicate alternatives to traditional post-etch treatments (PET). The method includes sequential exposure to (1) a local plasma formed from a silicon-fluorine precursor followed by (2) an exposure to plasma effluents formed in a remote plasma from a fluorine-containing precursor. The remote plasma etch (2) has been found to be highly selective of the residual material following the local plasma silicon-fluorine exposure. The sequential process (1)-(2) avoids exposing the low-k dielectric material to oxygen which would undesirably increase its dielectric constant.
Owner:APPLIED MATERIALS INC

Non-local plasma oxide etch

A method of etching exposed titanium oxide on heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor. Plasma effluents from the remote plasma are flawed into a substrate processing region where the plasma effluents may combine with a nitrogen-containing precursor such as an amine (N:) containing precursor. Reactants thereby produced etch, the patterned heterogeneous structures with high titanium oxide selectivity while the substrate is at elevated temperature. Titanium oxide etch may alternatively involve supplying a fluorine-containing precursor and a source of nitrogen-and-hydrogen-containing precursor to the remote plasma. The methods may be used to remove titanium oxide while removing little or no low-K dielectric, polysilicon, silicon nitride or titanium nitride.
Owner:APPLIED MATERIALS INC

Radical-component oxide etch

A method of etching exposed silicon oxide on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents combine with a nitrogen-and-hydrogen-containing precursor. Reactants thereby produced etch the patterned heterogeneous structures with high silicon oxide selectivity while the substrate is at high temperature compared to typical Siconi™ processes. The etch proceeds without producing residue on the substrate surface. The methods may be used to remove silicon oxide while removing little or no silicon, polysilicon, silicon nitride or titanium nitride.
Owner:APPLIED MATERIALS INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products