Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

324 results about "Nitrogen trifluoride" patented technology

Nitrogen trifluoride is the inorganic compound with the formula NF₃. This nitrogen-fluorine compound is a colorless, odorless, nonflammable gas. It finds increasing use as an etchant in microelectronics. Nitrogen trifluoride is an extremely strong greenhouse gas.

Method of epitaxial germanium tin alloy surface preparation

Methods of preparing a clean surface of germanium tin or silicon germanium tin layers for subsequent deposition are provided. An overlayer of Ge, doped Ge, another GeSn or SiGeSn layer, a doped GeSn or SiGeSn layer, an insulator, or a metal can be deposited on a prepared GeSn or SiGeSn layer by positioning a substrate with an exposed germanium tin or silicon germanium tin layer in a processing chamber, heating the processing chamber and flowing a halide gas into the processing chamber to etch the surface of the substrate using either thermal or plasma assisted etching followed by depositing an overlayer on the substantially oxide free and contaminant free surface. Methods can also include the placement and etching of a sacrificial layer, a thermal clean using rapid thermal annealing, or a process in a plasma of nitrogen trifluoride and ammonia gas.
Owner:APPLIED MATERIALS INC

Metal mask etching of silicon

The present disclosure provides a method for etching trenches, contact vias, or similar features to a depth of 100 mum and greater while permitting control of the etch profile (the shape of the sidewalls surrounding the etched opening). The method requires the use of a metal-comprising masking material in combination with a fluorine-comprising plasma etchant. The byproduct produced by a combination of the metal with reactive fluorine species must be essentially non-volatile under etch process conditions, and sufficiently non-corrosive to features on the substrate being etched, that the substrate remains unharmed by the etch process. Although aluminum is a preferred metal for the metal-comprising mask, other metals can be used for the masking material, so long as they produce an essentially non-volatile, non-corrosive etch byproduct under etch process conditions. By way of example, and not by way of limitation, metallic materials recommended for the mask include aluminum, cadmium, copper, chromium, gallium, indium, iron, magnesium, manganese, nickel, and combinations thereof. In particular, aluminum in combination with copper or magnesium is particularly useful, where the copper or magnesium content is less than about 8% by weight, and other constituents total less than about 2% by weight. The plasma feed gas includes at least one fluorine-containing compound such as nitrogen trifluoride (NF3), carbon tetrafluoride (CF4), and sulfur hexafluoride (SF6), by way of example and not by way of limitation. Oxygen (O2), or an oxygen-comprising compound, or hydrogen bromide (HBr), or a combination thereof may be added to the plasma feed gases to help provide a protective layer over etched sidewalls, assisting in profile control of the etched feature.
Owner:APPLIED MATERIALS INC

Method of etching tungsten or tungsten nitride electrode gates in semiconductor structures

The present invention relates to a method of etching tungsten or tungsten nitride in semiconductor structures, and particularly to the etching of gate electrodes which require precise control over the etching process. We have discovered a method of etching tungsten or tungsten nitride which permits precise etch profile control while providing excellent selectivity, of at least 175:1, for example, in favor of etching tungsten or tungsten nitride rather than an adjacent oxide layer. Typically, the oxide is selected from silicon oxide, silicon oxynitride, tantalum pentoxide, zirconium oxide, and combinations thereof. The method appears to be applicable to tungsten or tungsten nitride, whether deposited by physical vapor deposition (PVD) or chemical vapor deposition (CVD). In particular, an initial etch chemistry, used during the majority of the tungsten or tungsten nitride etching process (the main etch), employs the use of a plasma source gas where the chemically functional etchant species are generated from a combination of sulfur hexafluoride (SF6) and nitrogen (N2), or in the alternative, from a combination of nitrogen trifluoride (NF3), chlorine (Cl2), and carbon tetrafluoride (CF4). Toward the end of the main etching process, a second chemistry is used in which the chemically functional etchant species are generated from Cl2 and O2. This final portion of the etch process may be referred to as an "overetch" process, since etching is carried out to at least the surface underlying the tungsten or tungsten nitride. However, this second etch chemistry may optionally be divided into two steps, where the plasma source gas oxygen content and plasma source power are increased in the second step.
Owner:APPLIED MATERIALS INC

Fine preparation process for high-purity nitrogen trifluoride gas

The present invention relates to a method for refining high-purity NF gas by using crude product NF3 gas as raw material gas produced by electrolysis using NF4F-xHF as electrolyte system, and said method includes the following steps: A. removing impurities of H2O and HF from raw material gas in HF-removing tower; B. removing NxFy and FxOy from raw material gas in high-temp. cracking tower; C. removing N2O impurity from raw material gas in oxidation tower; D. removing oxidation substances produced in above-mentioned high-temp. cracking and oxidation steps of B and C in reduction tower; E. removing acidic substances from raw material gas in alkali-washing tower; F. removing water from raw material gas in low-temp. dewatering tower; G rectifying in rectifying tower.
Owner:PERIC SPECIAL GASES CO LTD

Chamber cleaning method

A method suitable for cleaning the interior surfaces of a process chamber is disclosed. The invention is particularly effective in removing silicon nitride and silicon dioxide residues from the interior surfaces of a chemical vapor deposition (CVD) chamber. The method includes reacting nitrous oxide (N2O) gas with nitrogen trifluoride (NF3) gas in a plasma to generate nitric oxide (NO) and fluoride (F) radicals. Due to the increased density of nitric oxide radicals generated from the nitrous oxide, the etch and removal rate of the residues on the interior surfaces of the chamber is enhanced. Consequently, the quantity of nitrogen trifluoride necessary to efficiently and expeditiously carry out the chamber cleaning process is reduced.
Owner:TAIWAN SEMICON MFG CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products