Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

884 results about "Asymmetric hydrogenation" patented technology

Asymmetric hydrogenation is a chemical reaction that adds two atoms of hydrogen preferentially to one of two faces of an unsaturated substrate molecule, such as an alkene or ketone. The selectivity derives from the manner that the substrate binds to the chiral catalysts. In jargon, this binding transmits spatial information (what chemists refer to as chirality) from the catalyst to the target, favoring the product as a single enantiomer. This enzyme-like selectivity is particularly applied to bioactive products such as pharmaceutical agents and agrochemicals.

Process for the preparation of chiral beta amino acid derivatives by asymmetric hydrogenation

The present invention relates to a process for the efficient preparation of enantiomerically enriched beta amino acid derivatives which are useful in the asymmetric synthesis of biologically active molecules. The process comprises an enantioselective hydrogenation of a prochiral beta amino acrylic acid derivative substrate in the presence of a transition metal precursor complexed with a chiral ferrocenyl diphosphine ligand.
Owner:MERCK SHARP & DOHME BV

Asymmetric synthesis method for botanical pesticide nicotine and anabasine

The invention relates to an asymmetric synthesis method for botanical pesticide nicotine and anabasine. The low-cost and easily acquired 2,5-dibromopyridine is taken as an initial raw material and is processed in two steps, so that the hydrogenation precursor annular imine is acquired; under the induction of the chiral catalyst, iridium-phosphine oxazoline, an important hydrogenated product intermediate is acquired through high enantioselectivity; the intermediate is processed in two steps, so that L-nicotine is acquired; the intermediate is converted into L-anabasine in one step. The asymmetric hydrogenation of the annular imine containing pyridine gene is taken as the key step of the method. According to the invention, the chiral catalyst, iridium-phosphine oxazoline, is used for catalyzing the asymmetric hydrogenation and the key intermediate with ultrahigh ee value is acquired, and then the methylation and reduction bromine-removing two-step reaction is performed for converting, so that the target products, natural nicotine and anabasine, are acquired. According to the invention, the operation is stable, the purity is high and the cost is low.
Owner:NANKAI UNIV

Method for preparing diaminonaphthalene by catalytic hydrogenation of dinitronaphthalene

A method for preparing diaminonaphthalene by catalytic hydrogenation of dinitronaphthalene relates to a preparation technology of the diaminonaphthalene, which comprises the following steps: adding a palladium catalyst comprising active components and a carrier and adding the dinitronaphthalene and solvent to a stainless steel high-pressure reactor with an agitator, closing the reactor, replacing air in the reactor with nitrogen for at least three times and then replacing the nitrogen in the reactor with hydrogen for at least three times, and then filling the hydrogen in the reactor so that the reaction pressure in the reactor reaches 0.4-4.0MPa, heating the reactor so that the reaction temperature reaches 30-150 DEG C so as to carry out catalytic hydrogenation to prepare the diaminonaphthalene. The method adopts the hydrogenation reaction technology in the stainless steel high-pressure reactor with the agitator; a catalyst carrier is pretreated to improve the activity of the catalyst and reduce the consumption of the catalyst. By optimizing the technological conditions, the rate of conversion from the dinitronaphthalene to the diaminonaphthalene is effectively improved and high selectivity of the product diaminonaphthalene is maintained.
Owner:JIANGSU POLYTECHNIC UNIVERSITY +1

Catalyst for preparing halogenated aniline through catalytic hydrogenation of halogenated nitrobenzene and application thereof

The invention discloses a catalyst for preparing halogenated aniline through catalytic hydrogenation of halogenated nitrobenzene. The catalyst comprises an activated carbon carrier and active component platinum adhered to the activated carbon carrier, and the mass percent of platinum in the catalyst is 0.1%-5%. The preparation method of the catalyst comprises the following steps: 1, pretreating activated carbon with inorganic acid, then washing to be neutral, and reserving after drying; 2, placing the dried activated carbon in carbonate aqueous solution for impregnating; 3, dissolving a platinum compound in water to obtain active component solution; 4, dripping the active component solution into the carbonate aqueous solution with impregnated activated carbon, carrying out insulated impregnating, adjusting the pH value of the system, and filtering after cooling to obtain a filter cake; 5, reducing the filter cake with a reducing agent, washing to be neutral, and drying to obtain the catalyst. The catalyst is simple in preparation process, can be repeatedly used, is high in reactivity, high in selectivity and good in stability, and can inhibit the side reactions of dehalogenation effectively.
Owner:XIAN CATALYST NEW MATERIALS CO LTD

Chiral diphosphite ligand and iridium composite catalyst and preparation thereof method and application to asymmetrical hydrogenization synthesis (S)-metolachlor

The invention relates to a kind of chiral diphosphite ligands, an iridium composite catalyst thereof, a preparation method and application thereof. The ligands are obtained through using chiral (R)-(S)-1-dimethylamino ethyiferroene as raw materials to react with diphenyl phosphonium chloride under the effect of butyl lithium and then to carry out displacement reaction with diaryl phosphine alkane. The chiral diphosphite ligands respectively act with homotropilidene compositions of iridous chloride, tetrabutyl ammonium iodide and glacial acetic acid, and imine asymmetrical hydrogenization catalysts can be obtained. When the iridium-diphosphine catalysts are used for catalyzing 2-methyl-6-ethyl-N-methylene aniline (EMA-imine) hydrogenization reaction, (S)-N-(1-anisyl-2-propyl)-2-methyl-6- ethylaniline ((S)-NNA) can be obtained, and the antimer excessive value (ee) can reach 86.5 percent. The (S)-NNA and chloracetyl chloride carry out acylation reaction to obtain (S)-metolachlor with the ee value of 86 percent. Thereby, the ligands provided by the invneiton can be used for synthesizing chiral herbicidal chemicals of (S)-metolachlor.
Owner:NANJING UNIV OF TECH +2

Catalyst used in the catalytic hydrogenation of p-nitrophenol and its preparation method

The invention involves a load palladium amorphous alloy catalyst used for nitrophenol hydrogenation and preparation method and belongs to catalyst technology field. Said catalyst uses NaY, MCM-41, molecular screen, Al2O3, TiO2, SiO2 or MgO as carrier, and is loaded with Pd-B amorphous alloy, the quality of Pd is 0.1-0.5% of toatl quality of catalyst. The preparation process includes ultrasonic dispersion, vacuum impregnation, KBH4 chemical reduction under vacuum conditions, filtration and washing of carriers; it is characterized by introducing vacuum and ultrasonic radiation conditions. The advantages of the invention lies in its high activity of catalyst, low preparation cost and simple preparation process, it could widely apply to the preparation of p-aminophenol through nitrophenol catalysis and hydrogenation.
Owner:NANJING UNIV OF TECH

Catalyst for using coal tar to prepare clean fuel oil by catalytic hydrogenation, preparation method and applications

The invention relates to a catalyst for using coal tar to prepare clean fuel oil by catalytic hydrogenation, comprising the following components in percentage by mass: 4 to 15 percent of molybdenum oxide, 3 to 9 percent of nickel oxide, 0.1 to 5 percent of cobalt oxide, 10 to 25 percent of tungsten oxide, 2.5 to 40 percent of silicon oxide and 26 to 65 percent of aluminium oxide. The preparation method of the catalyst comprises the following steps of: firstly, preparing a silicon oxide-aluminium oxide carrier, loading active components of Co, Mo, Ni and W on the carrier by an isosteric dipping method, drying, baking and forming. The catalyst can be used for the preparation of the clean fuel oil by catalytic hydrogenation of the coal tar, gasoline and diesel oil obtained from the prepared fuel oil after being separated respectively meet the national standard of 93# gasoline and 0# diesel oil.
Owner:SHANXI INST OF COAL CHEM CHINESE ACAD OF SCI

Method for preparing cis-pinane by asymmetric catalytic hydrogenation of alpha-pinene

The invention discloses a method for preparing cis-pinane by asymmetric catalytic hydrogenation of alpha-pinene, and belongs to the chemical engineering field. The method comprises the process steps: in a nitrogen atmosphere, heating RhCl3.3H2O to dissolve in an ethanol solution, and forming a solution A; dissolving newly recrystallized PPh3 in a deoxygenated ethanol, and forming a solution B; adding the solution B into the solution A, refluxing for a certain period of time, filtering under reduced pressure while being hot, washing with deoxygenated ether, carrying out vacuum drying to obtain a rhodium phosphine complex RhCl(PPh3)3; and adding the prepared rhodium phosphine complex RhCl(PPh3)3, an ionic liquid and alpha-pinene into a high-pressure reaction kettle according to a certain proportion, putting a cover and sealing, respectively replacing with nitrogen gas and hydrogen gas, carrying out pressure maintaining and leakage detection, and carrying out a reaction under certain conditions to prepare cis-pinane. The method has the advantages of mild reaction conditions, high conversion rate of alpha-pinene and high enantioselectivity of cis-pinane; the ionic liquid catalyst system is easily separated from the product and can be recycled; and the process flow is simple, and the energy consumption is low.
Owner:KUNMING UNIV OF SCI & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products