Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

619 results about "Chiral ligand" patented technology

In homogeneous catalysis, a C₂-symmetric ligands usually describes bidentate ligands that are dissymmetric but not asymmetric by virtue of their C₂-symmetry. Such ligands have proven valuable in catalysis. With C2 symmetry, C₂-symmetric ligands limit the number of possible reaction pathways and thereby increase enantioselectivity, at least relative to asymmetrical analogues. Chiral ligands combine with metals to form chiral catalyst, which engages in a chemical reaction in which chirality is transfer to the reaction product. C₂ symmetric ligands are a subset of chiral ligands.

Bimetallic catalyst for synthetizing vertical structure regular makrolon

The invention relates to a bimetallic catalyst for synthetizing vertical structure regular makrolon through catalyzing and activating carbon dioxide to be copolymerized with internal compensation alkyleneoxide. The catalyst is a dual four-tooth or dual three-tooth Schiff alkali complex, of which two metal centers are connected through a biphenyl skeleton. Under the action of single or nucleophilicity co-catalyst, the catalyst can be used for catalyzing the carbon dioxide efficiently to be copolymerized with the internal compensation alkyleneoxide under mild condition and lower concentration of the catalyst to prepare the makrolon, the makrolon can be regulated when the catalyst efficiency is 104-106g polymer/mole catalyst and the polymer molecular weight is between 103 and 105, the makrolon can be regulated when the molecular weight distribution is less than 2 and the vertical structure regularity is between 60-100%, an alternate structure exceeds 98% and the makrolon can be degraded into a small molecular compound. The product selectivity and structure selectivity of the polymer compounds of the catalyst system using a chiral ligand are all above 98%, the enantiomer excess value of the mellow obtained by degradation reaches as high as 99%, so that the bimetallic catalyst provides a broad prospect for industrial application.
Owner:DALIAN UNIV OF TECH

Non-interpenetrating chiral MOF stationary phase, its preparation method and application in enantiomer separation in HPLC

The invention relates to a non-interpenetrating chiral MOF (metal organic framework) stationary phase, its preparation method and application in enantiomer separation in HPLC (high-performance liquid chromatography). The stationary phase is a non-interpenetrating chiral three-dimensional porous framework complex with a structural formula as {[ZnL].H2O}n. An asymmetric structural unit {[ZnL].H2O} of the complex is composed of a Zn<2+>, an L ligand and a guest water molecule. The L ligand is -NH- containing chiral pyridine carboxylic acid, its chemical composition is [(N-(4-pyridylmethyl)-L-leucine.HBr)], and its molecular formula is C12H19BrN2O2. Chiral amino acid and 4-pyridylaldehyde are selected as raw materials to synthesize the-NH- containing pyridine carboxylic acid chiral ligand by a one-step process. The ligand and zinc acetate are adopted as raw materials to undergo room temperature diffusion so as to obtain the MOF stationary phase. The material provided in the invention has uniform chiral helical channel, uniform aperture and orifice, and can be used for separation of chiral drugs and other enantiomers. The separation is selectively dependent on the size of a separated enantiomer molecular size, but is not dependent on the functional group of the separated enantiomer. Thus, the non-interpenetrating chiral MOF stationary phase has the characteristics of traditional zeolite molecular sieve separation.
Owner:SHANDONG NORMAL UNIV

Preparation method and application for phosphine-oxazoline ligand, and ionic metal complex, enantiomer or racemate thereof

The invention discloses a preparation method and an application for phosphine-oxazoline ligand, and ionic metal complex, enantiomer or racemate thereof. The ligand and the ionic metal complex thereof have the following structural formulas. The phosphine ligand related by the invention employs biphenyl as a skeleton, and realizes completely transmission from planar chirality to axial chirality through an asymmetric desymmerization. The synthetic method is simple and economic, omits a common and complex chiral separation process in the preparation of the chiral ligand. The obtained chiral ligand has the advantages of high reactive activity, good enantiomorphous selectivity and the like in a model reaction.
Owner:SUN YAT SEN UNIV

Preparation method of Vortioxetine

The invention relates to the preparation method of Vortioxetine. The preparation method is characterized by comprising the steps of: obtaining a compound (formula 2) by carrying out coupling reaction on compound 2,4-dimethylbenzenethiol (formula 4) and compound 2-bromoiodobenzene (formula 3) in the presence of copper iodide, chiral ligand and alkali; obtaining a compound (formula 1) through the reaction of compound in formula 2 and piperazine in the presence of copper iodide, chiral ligand and alkali; or operating the twp steps in one reactor by one-pot method; the preparation method is easy to obtain material, simple in technology, high in product purity, few in by-products and beneficial to industrial production of the bulk drug.
Owner:冯修武

Applications of chiral polymer catalyst in asymmetric reaction

The invention discloses applications of a chiral polymer catalyst in asymmetric reaction, and belongs to the field of material synthesis and application. The phosphine-containing polymer is obtained via mixed polymerization of vinyl-containing chiral bidentate phosphine ligand BINAP (2,2'-bis(diphenylphosphino)-1,1'-binaphthyl) and derivative of vinyl-containing chiral bidentate phosphine ligand BINAP (2,2'-bis(diphenylphosphino)-1,1'-binaphthyl) with other vinyl comonomers. The vinyl polymer possesses relatively large specific surface area and porosity, and excellent thermal stability and chemical stability. In the heterogeneous catalyst, one or a plurality of elements selected from Ru, Rh, Ir, Pa, Au, and Cu are taken as active ingredients. The chiral ligand is uniformly embedded into and highly dispersed in a polymer skeleton, so that metal dispersion degree on the catalyst is relatively high, and relatively high catalytic activity is achieved. The heterogeneous catalyst is suitable for a plurality of reaction technology including intermittent still reaction, continuous fixed bed reaction, and trickle bed reaction. When the heterogeneous catalyst is used in catalytic kettle-type asymmetric hydrogenation, high target product yield is achieved, and enantioselectivity is higher than 96%.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Preparation method of NEP (neutral endopeptidase) inhibitor intermediate

The invention discloses a preparation method of an NEP (neutral endopeptidase) inhibitor intermediate, further discloses a selective reduction preparation method of the NEP inhibitor intermediate (2R, 4S)-5-([1,1'-biphenyl]-4-yl)-4-((t-butyloxycarboryl)amino)-2-methylpentanoic acid in presence of a chiral ligand, and particularly discloses a diastereoselective hydrogenation synthetic method with hydrogen under the condition of presence of a transition metal catalyst and the chiral ligand. The metal catalyst used in the method is cheap, the chiral ligand is obtained easily, high yield is realized, a high-purity product is produced preferably, and the product with the proportion of diastereoisomers being 90:10 is produced preferably.
Owner:苏州楚凯药业有限公司

Osmium oxide composition

The present invention provides an osmium oxide composition comprising an osmium oxide microencapsulated in an aromatic polyolefin (hereinafter abbreviated as MCOsOx), a method for preparation of MCOsOx, which comprises allowing an osmium oxide to contact with an aromatic polyolefin in an organic solvent, and precipitating MCOsOx, an oxidizing agent comprising MCOsOx, a method for preparing a chiral diol compound, which comprises reacting MCOsOx, a chiral ligand and an olefin compound with each other, and a method for preparing a chiral diol compound, which comprises oxidizing an olefin compound with MCOsOx wherein a chiral ligand further coordinates to an osmium oxide.
Owner:KOBAYASHI SHU +1

Chiral phosphines, transition metal complexes thereof and uses thereof in asymmetric reactions

Chiral ligands and transition metal complexes based on such chiral ligands useful in asymmetric catalysis are disclosed. The chiral ligands include (R,S,S,R)-DIOP*. The ruthenium complex reduces enamide to the corresponding amine with up to 99% enantioselectivity. The transition metal complexes of the chiral ligands are useful in asymmetric reactions such as asymmetric hydrogenation, hydride transfer, hydrosilylation, hydroboration, hydrovinylation, hydroformylation, hydrocarboxylation, isomerization, allylic alkylation, cyclopropanation, Diels-Alder reaction, Heck reaction, isomerization, Aldol reaction, Michael addition and epoxidation reactions.
Owner:PENN STATE RES FOUND

Method for synthesizing derivatives of chiral tetrahydroquinoline by catalyzing asymmetric hydrosilylation with iridium

The invention provides a method for synthesizing derivatives of chiral tetrahydroquinoline by catalyzing asymmetric hydrosilylation with iridium. In the method, a used catalytic system is a chiral duplex phosphorus complex generated in situ. The reaction can be performed under the following conditions: a room temperature; a tetrahydrofuran solvent; a chlorizated cyclooctadiene iridium metallic precursor; and a chiral duplex phosphorus ligand chiral ligand. The method for preparing the catalyst comprises the following steps of: stirring the metallic precursor of iridium and the chiral duplex phosphorus ligand in the tetrahydrofuran at room temperature, adding the simple substance of iodine, stirring the mixture, and finally adding quinoline substrates, triethyl silicon hydrogen and water. By the hydrosilylation of quinoline, the corresponding derivatives of chiral tetrahydroquinoline are obtained, and the enantiomeric excess of the derivatives reaches 93 percent. The method has the advantages of easy and practical operation, readily available raw materials, high antipodal selectivity, high yield, no use of dangerous articles such as hydrogen gas and the like, safety and reliability; in addition, the reaction is environment-friendly.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Chiral MOF (Metal-Organic Framework) composite material catalyst as well as preparation method and application thereof

The invention discloses a chiral MOF (Metal-Organic Framework) composite material catalyst as well as a preparation method and application thereof to detection of a chiral enantiomer based on the composite material, and belongs to the technical fields of nano composite materials, MOF materials and chiral sensory detection. The preparation method comprises the following main steps of blending an alkaline aqueous solution of a chiral ligand with an aqueous solution of copper acetate-graphene oxide-surfactant, standing at a room temperature, centrifugally separating, washing with water, and drying, so that the chiral MOF composite material catalyst is prepared. A chiral sensor constructed by adopting the composite material is used for detecting the contents of D-(+)-tryptophan and L-(-)-tryptophan enantiomers, and the method is simple, and is easy to operate and obvious in chiral detection effect.
Owner:UNIV OF JINAN
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products