Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

56 results about "Anisotropy energy" patented technology

Anisotropic energy is energy that is directionally specific. The word anisotropy means "directionally dependent", hence the definition. The most common form of anisotropic energy is magnetocrystalline anisotropy, which is commonly studied in ferrimagnets. In ferrimagnets, there are islands or domains of atoms that are all coordinated in a certain direction; this spontaneous positioning is often called the "easy" direction, indicating that this is the lowest energy state for these atoms. In order to study magnetocrystalline anisotropy, energy (usually in the form of an electric current) is applied to the domain, which causes the crystals to deflect from the "easy" to "hard" positions. The energy required to do this is defined as the anisotropic energy. The easy and hard alignments and their relative energies are due to the interaction between spin magnetic moment of each atom and the crystal lattice of the compound being studied. One of the many projects currently researching this phenomenon is directed by Stefan Krause and Roland Wiesendanger of the University of Hamburg. Using spin-polarized scanning tunnelling microscopes they are observing the effect upon the macrospin states of domains by passing a spin-polarized current through the atoms, and observing their alignment and how long they maintain their spin state.

Magnetic resistance sensor for measuring magnetic field

The invention provides a magnetic resistance sensor for measuring a magnetic field. By the sensor, the sensitivity of a magnetic resistance sensing element can be calculated, and is related to shape anisotropy and an outer field. A long shaft of a magnetic resistance element is parallel to a sensitive direction, and the magnetic moment of the magnetic resistance element can be further saturated by the component Hcross of the outer field in the vertical sensitive direction at the same time. A monolithic permanent magnet has the effect of generating an Hcross field with an angle and offsetting a non-ideal field along an easy magnetization axis at the same time. The magnetic resistance element with high sensitivity can be widely applied in the field of electrics. Six electrical bridges formed by the magnetic resistance sensor can be presented in the magnetic resistance sensor.
Owner:MULTIDIMENSION TECH CO LTD

Monolithic reference full bridge magnetic field sensor

The invention discloses a monolithic reference full bridge magnetic field sensor. The magnetic field sensor is a Wheatstone bridge formed by a magneto-resistor reference element and a sensing element. Both a sensing arm and a reference arm are magnetic tunnel junction resistance or giant magnetoresistance material. According to the invention, the sensitivity of the sensing element and the reference element are adjusted through one or one set of magnetic bias combination, exchange bias, magnetic shielding or shape anisotropy performance. In addition, bridge output offset and symmetry can be optimized through presetting and adjusting a resistance value ratio of the reference element to the sensing element. Through using the technology, the magnetic field sensor presents excellent temperature stability, low offset voltage and excellent voltage symmetry.
Owner:MULTIDIMENSION TECH CO LTD

Hydrophobic surface, preparation method and application thereof in dropwise condensation heat transfer

InactiveCN103359684AAccelerated mergerAccelerated sheddingMaterial nanotechnologyIndividual molecule manipulationMicro nanoLevel structure
The invention discloses a hydrophobic surface, a preparation method and application thereof in dropwise condensation heat transfer, and relates to the fields of micro-nano manufacturing, condensation heat transfer and the like. The hydrophobic surface has a micro-nano two-level structure, wherein the micro-nano two-level structure is anisotropic and the hydrophobic surface has anisotropic wettability. On one hand, the micro-nano two-level structure of the hydrophobic surface can promote realization of dropwise condensation, and can significantly improve the heat transfer efficiency compared with the common filmwise condensation,; on the other hand, the anisotropic wettability of the hydrophobic surface can affect condensation and fall of water drops to a certain extent and can accelerate discharge of liquid drops under the influence of gravity and other factors, thereby further improving the condensation heat transfer efficiency.
Owner:XI AN JIAOTONG UNIV

Magnetic memory device

A memory cell (310) for a magnetic memory device (300) includes a free layer (311), a cap layer, an antiferromagnetic layer, and a synthetic antiferromagnetic layer which comprises two or more than two ferromagnetic layers that are antiferromagnetically coupled through non-magnetic space layers. The synthetic antiferromagnetic layer is pinned by antiferromagnetic layer. The antiferromagnetic layer and the synthetic antiferromagnetic layer form a synthetic antiferromagnetic pinned (SAFP) recording layer. The magnetization of the SAFP recording layer can be changed by combining a heating process and an external field induced from currents flowing along the bit line (320) and the word line (330). Therefore, a MRAM with high density, high thermal stability, low power dissipation and high heat tolerance can be achieved after introducing the SAFP recording layer due to the high volume and anisotropy energy of the SAFP recording layer.
Owner:AGENCY FOR SCI TECH & RES

Method for preparing polymer-bonded magnetic refrigerating composite material

InactiveCN102764887AStrong magnetic thermal performanceStrength and toughness enhance magnetocaloric performanceHeat-exchange elementsManganeseMagnetocrystalline anisotropy
The invention belongs to the technical field of magnetic refrigerating materials and particularly relates to a method for preparing polymer-bonded magnetic refrigerating composite material, which is characterized in that room-temperature magnetic refrigerating alloy particles including iron-based, manganese-based, nickel-based or gadolinium-based particles are mechanically mixed with a resin with high thermal conductivity, and a polymer is cured in magnetic field to obtain the oriented arrangement with alloy particle embedded, wherein alloy particles account for 50-98% of the total volume. The magnetic refrigerating composite block material has high magneto-thermal performance, large magneto-crystalline anisotropy and large magneto-thermal anisotropy and also has low vortex loss when being used at high frequency. The compressive toughness of the magnetic refrigerating composite block material is improved by 1 to 2 orders of magnitude than that of the existing magnetic refrigerating alloy. The process for preparing the polymer-bonded magnetic refrigerating composite material is simple, the complex profiles in near net shapes can be obtained, the steps of cutting and processing are omitted, and industrial mass production is easy to realize.
Owner:XIAN JIAWEN MATERIAL TECH

Magneto-elastic amorphous wire material and magnetoelastic displacement transducer

Magneto-elastic amorphous alloy material and a preparation method thereof are provided. The material is composed of FexReyBz, wherein, Re is one or more than two of La, Sm, Tb, Dy and Y. The preparation method is to mix and melt the FexReyBz into master alloy according to the atom percentage, produce amorphous wires on self-developed wire spraying equipment, strengthen internal stress through drawing the wires and improve the magneto-elastic performance of the wires. The material is provided with the 10<-3> vertical large magnetostrictive coefficient. And through the quenching and rapid setting preparation method, extremely large inner stress gradient from the surface to the core of the wires is made. The material is also provided with large inner stress anisotropy performance, and part of magneto-elastic performance is produced. The surface crystallization layer of the wires, the thickness of which is tens of nanometers to hundreds of nanometers, and amorphous matrixes produce magnetocrystalline anistotropy energies which strengthen the magneto-elastic performance of the wires. The material is provided with the vertical large magnetostrictive coefficient and makes use of a self-developed displacement sensor and a measurement instrument. Compared with the present import super-magnetostrictive displacement sensor, the sensor has the advantages of large investigation depth, high precision and strong vibration resistance capacity.
Owner:北京国浩微磁电子智能传感器技术研究所

Perpendicular anisotropic magnetic element, preparation method and magnetic memory

The invention provides a perpendicular anisotropic magnetic element, a preparation method and a magnetic memory. A semiconductor integrated circuit is connected by the magnetic element in a magnetic device to form a storage bit cell; the magnetic element has a structure of a perpendicular anisotropic magnetic pinned layer, a non-magnetic spacer layer and a perpendicular anisotropic magnetic free layer; the non-magnetic spacer layer is located between the perpendicular anisotropic magnetic pinned layer and the free layer; the perpendicular anisotropic magnetic free layer has demagnetizing energy perpendicular to the membrane plane direction and corresponding perpendicular anisotropic energy; the perpendicular anisotropic energy is greater than the demagnetizing energy perpendicular to the membrane plane direction; and when write current passes through the magnetic element, the perpendicular anisotropic magnetic free layer can achieve switching between a parallel magnetic state and an anti-parallel magnetic state perpendicular to the plane direction through a spin torque transmission effect, so that the target of magnetic storage is achieved.
Owner:HUBEI ZHONGBU HUIYI DATA TECH

Magnetic recording apparatus

A magnetic recording apparatus includes a magnetic recording medium that is provided with a first magnetic layer with magneto crystalline anisotropy energy, a second magnetic layer with magneto crystalline anisotropy energy that is smaller than the magneto crystalline anisotropy energy of the first magnetic layer, and a nonmagnetic metal layer that is positioned between the first magnetic layer and the second magnetic layer and that provides coupling force between the first magnetic layer and the second magnetic layer; and a magnetic head that includes a main pole that applies a recording magnetic field in a direction perpendicular to a film surface of the magnetic recording medium to the magnetic recording medium, and an alternate current (AC) magnetic field generator that applies an AC magnetic field with a frequency of 1-40 GHz to the magnetic recording medium.
Owner:TDK CORPARATION

Regulation and control method and system of tunneling magnetoresistance sensor

The invention discloses a regulation and control method of a tunneling magnetoresistance sensor. The regulation and control method comprises the steps that a voltage is loaded between a bottom electrode and a top electrode of the tunneling magnetoresistance sensor, wherein the voltage is a variable voltage provided by an adjustable power supply; and the voltage value between the bottom electrode and the top electrode is adjusted to adjust and control the range and sensitivity of the tunneling magnetoresistance sensor. According to the regulation and control method, the voltage is loaded between the bottom electrode and the top electrode of the tunneling magnetoresistance sensor based on the adjustable power supply, and the coupling coefficient of the interface vertical anisotropy of the magnetic tunnel junction in the tunneling magnetoresistance sensor is changed by adjusting the applied voltage value; and through the coupling coefficient, the interface vertical anisotropy energy can be adjusted, and then the magnetic anisotropy energy of the magnetic tunnel junction is adjusted, so that the sensitivity and the linear region of the tunneling magnetoresistance sensor are correspondingly adjusted, no additional compensation circuit is needed, and the overall complexity of a magnetic detection system is reduced. Correspondingly, the invention further discloses a regulation and control system of the tunneling magnetoresistance sensor.
Owner:INST OF MICROELECTRONICS CHINESE ACAD OF SCI

Novel stress sensor based on magnetoresistance effect

The invention relates to a novel stress sensor based on a magnetoresistance effect. The technical scheme is as follows: an upper layer of the novel stress sensor is an upper ferromagnetic layer; a middle layer is a non-ferromagnetic layer; a lower layer is a lower ferromagnetic layer; a packing layer packs the upper layer, the middle layer and the lower layer; a wire is connected with the upper ferromagnetic layer after passing through the packing layer; the other end of the wire is connected in series to an indicator light, an ampere meter and a power supply and is then connected with the lower ferromagnetic layer after passing through the packing layer; and magnetostriction coefficients of the upper ferromagnetic layer and the lower ferromagnetic layer have opposite symbols, and the magnetostriction coefficients are big and have the same small anisotropic index. The novel stress sensor based on the magnetoresistance effect overcomes the defects of poor sensitivity to an external environment, poor fatigue resistance, complex structure, difficult miniaturization, high cost, poor sensitivity and accuracy of the traditional stress sensor which cannot meet the demands. The novel stress sensor based on the magnetoresistance effect has the advantages of simplicity in circuit design, mature process and sensitivity and can quantify scales directly.
Owner:YANGZHOU UNIV

Preparing method for two-dimensional skyrmion crystal

The invention discloses a preparing method for a two-dimensional skyrmion crystal. Nanometer magnetic discs are directly put on the upper surface of a perpendicular anisotropic material, and a skyrmion crystal structure is obtained through the competition of interaction of demagnetization energy, exchange energy and anisotropic performance between magnetic materials. Especially, a cobaltic nanometer magnetic disc array is put on the plane of a cobalt and platinum alloy, and the magnetized rotating directions of all the magnetic discs of the nanometer magnetic disc array are unified through the method of applying combined magnetic fields which are parallel to the surface of a film and perpendicular to each other.
Owner:NANJING UNIV

Rapid salt-bath nitridation method by applying magnetic field

The invention relates to a rapid salt-bath nitridation method by applying a magnetic field. The method comprises the following steps: washing, pre-oxidizing, melting nitridation basic salts, applying a magnetic field to carry out nitridation, and washing. The method has the advantages that under the effect of a magnetic field, domain rotation and domain wall displacement are generated around the material surface, the exchange energy and anisotropy energy are increased, and the nitrogen atom diffusion is accelerated; magnetization happens near the surface of workpiece, magneto-striction is generated then, the strain energy is increased, and the diffusion of nitrogen atom is accelerated; active nitrogen atoms diffuse on the material surface under the effect of the magnetic field, the surface adsorption and diffusion are accelerated, the penetration is promoted and accelerated, the salt-bath nitrogen penetration time is reduced, the energy is saved, and the environment is protected; the hardness and surface wear-resistant performance of a sample is improved, the excellent surface corrosion resistant performance of the sample can be preserved; in the provided method, people can obtain a nitrogen penetration layer with the same thickness as that of a nitrogen penetration layer, which is produced by a common salt-bath nitrogen penetration method, by low-temperature heating, thus the energy is saved, and the production cost is reduced.
Owner:CHANGZHOU UNIV

Method for increasing the interface magnetic anisotropy energy of ferromagnetic metal/oxide bilayer film

The invention relates to a method for increasing the interface magnetic anisotropy energy of a ferromagnetic metal/oxide bilayer film, belonging to the technical field of high-density information storage and sensing. Chromium Cr/FeNx/MgO/Ta multilayer films were deposited on Si substrates after surface acidification. After deposition, heat treatment is carried out to promote the uniform occupationof N atoms at interstitial sites. N atom can change the coordination environment of Fe, the charge redistribution at Fe/MgO interface is caused, the energy band structure of Fe is effectively regulated, the electron occupation on a dz2 orbit is greatly increased, and the hybrid state of Fe3dz2-O2pz orbit can be regulated, so that the magnetic anisotropy energy of the interface of the thin film isremarkably increased. In the invention, only nitrogen is needed to be introduced into the process of preparing the Fe thin film, and the orbital hybridization intensity of FeO can be directly regulated and the magnetic anisotropy energy of the interface is increased. There is no need of high cost rare metal or expensive additional device, which has the characteristics of simple preparation and convenient control. With the advantages of high efficiency and low cost, the method for increasing the interface magnetic anisotropy energy of a ferromagnetic metal/oxide bilayer film is suitable for the future spintronics technology.
Owner:UNIV OF SCI & TECH BEIJING

Method for solving super-paramagnetic state of magnetic recording particles

The invention discloses a method for solving a super-paramagnetic state of magnetic recording particles, which is characterized in that: a layer of anti-ferromagnetic material capable of pinning the magnetic moment thereof is wrapped outside the magnetic recording particles, and the anti-ferromagnetic material is coupled with the magnetic recording particles through an interface magnetic moment to ensure that the magnetic moments of the magnetic recording particles are arranged along the same direction. The method can overcome thermal disturbance under a nano-scale of the magnetic particles, improve uniaxial anisotropy energy of the magnetic particles artificially, and solve the problem of unstable records in the super-paramagnetic state.
Owner:UNIV OF ELECTRONIC SCI & TECH OF CHINA

Polycrystalline structure and its production method

A polycrystalline structure (24) has a base layer (31) stretching over a substrate (23). Small magnetic crystalline particles (32) are scatterlingly present on the base layer (31). The magnetic crystalline particles (32) are formed of an ordered alloy and spaced from one another on the base layer (31). Since sufficient crystal magnetic isotropy energy of the magnetic crystalline particles (32) is ensured, the magnetization in the magnetic crystalline particles (32) is maintained reliably even if the magnetic crystalline particles (32) are further atomized, and the spatial intervals between the magnetic crystalline particles (32) is ensured. The magnetic crystalline particles (32) are independent of one another. The magnetic interaction between adjacent magnetic crystalline particles (32) are completely cut. The magnetic domain of each magnetic crystalline particle (32) is established.
Owner:RESONAC HOLDINGS CORPORATION
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products