Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

252results about How to "Improve film properties" patented technology

Wafer-Supporting Device and Method for Producing Same

ActiveUS20130014896A1Improve uniformity of film thickness and film propertyReduce contact areaSemiconductor/solid-state device manufacturingSpecial surfacesEngineeringSemiconductor
A wafer-supporting device for supporting a wafer thereon adapted to be installed in a semiconductor-processing apparatus includes: a base surface; and protrusions protruding from the base surface and having rounded tips for supporting a wafer thereon. The rounded tips are such that a reverse side of a wafer is supported entirely by the rounded tips by point contact. The protrusions are disposed substantially uniformly on an area of the base surface over which a wafer is placed, wherein the number (N) and the height (H [μm]) of the protrusions as determined in use satisfy the following inequities per area for a 300-mm wafer:(−0.5N+40)≦H≦53; 5≦N<100.
Owner:ASM JAPAN

Method of depositing film by peald using negative bias

A method of forming a film on a substrate by PEALD includes deposition cycles, each including (i) feeding a precursor in a pulse to a reaction space to adsorb a precursor on a surface of a substrate; (ii) after step (i), applying RF power to a second electrode to generate in the reaction space a plasma to which the precursor-adsorbed surface is exposed, thereby forming a sublayer on the surface; and (iii) applying a bias voltage to the second electrode while applying RF power in step (ii), which bias voltage is negative with reference to a potential on a surface of the first electrode, wherein the cycle is repeated to deposit multiple sublayers until a film constituted by the sublayers has a desired thickness.
Owner:ASM IP HLDG BV

Cellulose acylate laminate film, method for producing same, polarizer and liquid crystal display device

A stretched cellulose acylate laminate film having a skin layer containing a cellulose acylate with a total degree of acyl substitution of more than 2.7 and a core layer containing a cellulose acylate with a total degree of acyl substitution of 2.0-2.7 wherein the core layer is thicker than the skin B layer and at least one of these layers contains a retardation-controlling agent, is excellent in high expressibility, little optical unevenness and good releasability from a support.
Owner:FUJIFILM CORP

Method for Producing Silicon Nitride Films

(Problem) To provide a method for producing silicon nitride films by vapor deposition that, while employing trisilylamine as precursor, can produce silicon nitride films that exhibit excellent film properties and can do so at relatively low temperatures and relatively high growth rates. (Solution) Method for producing silicon nitride film, said method being characterized by feeding gaseous trisilylamine and gaseous nitrogen source comprising at least two amine-type compounds selected from amine-type compounds with formula (1) NR1R2R3 (R1, R2, and R3 are each independently selected from hydrogen and C1-6 hydrocarbyl) into a reaction chamber that holds at least one substrate and forming silicon nitride film on said at least one substrate by reacting the trisilylamine and said nitrogen source.
Owner:LAIR LIQUIDE SA POUR LETUDE & LEXPLOITATION DES PROCEDES GEORGES CLAUDE

Curing Dielectric Films Under A Reducing Atmosphere

The present invention provides a process for forming a porous dielectric film, the process comprising: forming onto at least a portion of a substrate a composite film comprising Si, C, O, H and Si—CH3 groups, wherein the composite film comprises at least one silicon-containing structure-forming material and at least one carbon-containing pore-forming material; and exposing the composite film to an activated chemical species to at least partially modify the carbon-containing pore-forming material, wherein at least 90% of Si—CH3 species in the as deposited film remains in the film after the exposing step as determined by FTIR.
Owner:VERSUM MATERIALS US LLC

Ion assisted deposition source

In accordance with one specific embodiment of the present invention, the ion assisted deposition source for thin films comprises an axially symmetric discharge region into which an ionizable gas is introduced, a sputter target at one end of that region, an axially symmetric magnetic field within and extending out the opposite and open end of that region, an anode around the circumference of that region, and an electron emitting cathode located near the open end of that region. Particles are sputtered from the sputter target, pass through the discharge region, and are deposited on a deposition substrate located exterior of both the discharge region and the deposition source. A beam of energetic ions from the discharge region bombards the film being deposited to improve the adhesion, density, and other properties of that film. The density of the plasma can be controlled with the emission from the cathode, the emission of sputtered particles from the sputter target can be controlled with the negative potential of that target, while the energy of the ions used to assist in the deposition can be controlled with the positive potential of the anode. The deposition source thus simultaneously generates a flux of sputtered material with which to deposit a film on a substrate and a beam of energetic ions to assist in that deposition, and does so with a simple and economical apparatus.
Owner:KAUFMAN & ROBINSON
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products