Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2170 results about "Melt temperature" patented technology

A melting point is essentially a set temperature that an element has where it begins to melt. Ice for example, begins to melt at 32° Fahrenheit. On the other hand, iron has a melting point of about 2,800° Fahrenheit.

Bandgap grading in thin-film devices via solid group IIIA particles

InactiveUS20080057616A1Efficient and simplified creationPrevent leaching and phase separationSemiconductor/solid-state device manufacturingPhotovoltaic energy generationHigh concentrationBandgap grading
Methods and devices are provided for forming thin-films from solid group IIIA-based particles. In one embodiment, a method is provided for bandgap grading in a thin-film device using such particles. The method may be comprised of providing a bandgap grading material comprising of an alloy having: a) a IIIA material and b) a group IA-based material, wherein the alloy has a higher melting temperature than a melting temperature of the IIIA material in elemental form. A precursor material may be deposited on a substrate to form a precursor layer. The precursor material comprising group IB, IIIA, and / or VIA based particles. The bandgap grading material of the alloy may be deposited after depositing the precursor material. The alloy in the grading material may react after the precursor layer has begun to sinter and thus maintains a higher concentration of IIIA material in a portion of the compound film that forms above a portion that sinters first.
Owner:AERIS CAPITAL SUSTAINABLE IP

Metal attachment method and structure for attaching substrates at low temperatures

A high density integrated circuit structure and method of making the same includes providing a first silicon substrate structure having semiconductor device formations in accordance with a first circuit implementation and metal interlevel lines disposed on a top surface thereof and a second silicon substrate structure having a second circuit implementation and metal interlevel lines disposed on a top surface thereof. The first substrate structure includes a planarized low-K dielectric disposed between the metal interlevel lines and a protective coating separating the metal interlevel lines from is the low-K dielectric, the metal interlevel lines of the first silicon substrate structure have a melting temperature on the order of less than 500 DEG C. and the low-K dielectric having a dielectric K-value in the range of 2.0-3.8. The second substrate structure also includes a planarized low-K dielectric disposed between the metal interlevel lines and a protective coating separating the metal interlevel lines from the low-K dielectric, the metal interlevel lines having a melting temperature on the order of less than 500 DEG C. and the low-K dielectric having a dielectric K-value in the range of 2.0-3.8. Lastly, the first substrate structure is low temperature bonded to the second substrate structure at respective metal interlevel lines of the first and second substrate structures.
Owner:ADVANCED MICRO DEVICES INC

Method of multiple pulse laser annealing to activate ultra-shallow junctions

A method for forming a highly activated ultra shallow ion implanted semiconductive elements for use in sub-tenth micron MOSFET technology is described. A key feature of the method is the ability to activate the implanted impurity to a highly active state without permitting the dopant to diffuse further to deepen the junction. A selected single crystalline silicon active region is first amorphized by implanting a heavy ion such as silicon or germanium. A semiconductive impurity for example boron is then implanted and activated by pulsed laser annealing whereby the pulse fluence, frequency, and duration are chosen to maintain the amorphized region just below it's melting temperature. It is found that just below the melting temperature there is sufficient local ion mobility to secure the dopant into active positions within the silicon matrix to achieve a high degree of activation with essentially no change in concentration profile. The selection of the proper laser annealing parameters is optimized by observation of the reduction of sheet resistance and concentration profile as measured on a test site. Application of the method is applied to forming a MOS FET and a CMOS device. The additional processing steps required by the invention are applied simultaneously to both n-channel and p-channel devices of the CMOS device pair.
Owner:CHARTERED SEMICONDUCTOR MANUFACTURING

Packaging of multiple active optical devices

A cost effective method is provided for assembly of hybrid optoelectronic circuits requiring flip-chip bonding of multiple active optoelectronic devices onto common substrate or optical bench platform with fine pitch and high accuracy "after-bonding" alignment to the alignment features on substrate and / or to other elements of the hybrid circuit. A Flip-Chip Bonder equipped with high precision Bonding Arm and optical and mechanical system, heated substrate chuck and heated pick-up tool may be used both for alignment and thermal bonding of active component dies to corresponding bonding pads on the common substrate using gold-tin (Au-Sn) solder disposed between die bonding pad and the corresponding substrate bonding pad. During bonding of the first die, tin (Sn) diffuses from a eutectic composition of gold-tin (Au-Sn) solder to (gold (Au) on) the die-bonding pad and / or (gold (Au) on) the substrate bonding-pad resulting in transformation of the Au-Sn eutectic composition to a zeta-phase composition having much higher melting temperature as compared to that of a eutectic composition. As bonding of one or more subsequent dies is performed at temperatures equal to or slightly higher than the melting temperature of a eutectic composition and significantly lower than the melting temperature of a zeta-phase composition, the gold-tin (Au-Sn) solder at the bond of previously attached die does not melt and, consequently, the alignment is not compromised.
Owner:INTEL CORP

Lumen occluders made from thermodynamic materials

Disclosed are occluders and methods of their use. The occluders comprise shape-memory polymeric materials which, when heated above their crystalline melting temperatures, may be deformed from a first configuration into a second configuration. The occluder is then held in the deformed shape until it cools to a temperature below its crystalline melting temperature (T.sub.m) whereby it holds the deformed shape of the second configuration by virtue of the recrystallization of the polymeric occluder material. Upon reheating the occluder above its T.sub.m, the occluder will resume its original shape. In this manner, an occluder which has been deformed to reduce its diameter may be inserted into and positioned within a target lumen in the body and then allowed to warm to body temperature whereby it resumes its original diameter and results in the occlusion of the lumen. The occluders, according to preferred embodiments, may be used for reversible sterilization of mammals, among other surgical and non-surgical uses.
Owner:NUMED TECH

Metal attachment method and structure for attaching substrates at low temperatures

A high density integrated circuit structure and method of making the same includes providing a first silicon substrate structure having semiconductor device formations in accordance with a first circuit implementation and metal interlevel lines disposed on a top surface thereof and a second silicon substrate structure having a second circuit implementation and metal interlevel lines disposed on a top surface thereof. The first substrate structure includes a planarized low-K dielectric disposed between the metal interlevel lines and a protective coating separating the metal interlevel lines from the low-K dielectric, the metal interlevel lines of the first silicon substrate structure have a melting temperature on the order of less than 500 DEG C. and the low-K dielectric having a dielectric K-value in the range of 2.0-3.8. The second substrate structure also includes a planarized low-K dielectric disposed between the metal interlevel lines and a protective coating separating the metal interlevel lines from the low-K dielectric, the metal interlevel lines having a melting temperature on the order of less than 500 DEG C. and the low-K dielectric having a dielectric K-value in the range of 2.0-3.8. Lastly, the first substrate structure is low temperature bonded to the second substrate structure at respective metal interlevel lines of the first and second substrate structures.
Owner:ADVANCED MICRO DEVICES INC

Polymeric encapsulation of nanoparticles

Polymeric nanoencapsulation methods, which combine sonication and nonsolvent temperature induced crystallization, are provided. The steps include (a) providing active agent nanoparticles having an average diameter between about 5 and about 100 nm; (b) treating said active agent nanoparticles (e.g., a superparamagnetic material) with an anionic surfactant to form modified active agent nanoparticles; (c) mixing the modified active agent nanoparticles with a solution of a polymer in a solvent at a first temperature, which is greater than the melting temperature of the polymer and less than the boiling point of the solvent to form a first mixture, said mixing comprising the use of sonication; (d) mixing a non-solvent with the first mixture to form a second mixture, the non-solvent being a non-solvent for the solvent and for the polymer and having a boiling point greater than the melting temperature of the polymer; (e) sonicating the second mixture to form an emulsion; and (f) cooling the emulsion to a second temperature and at a rate effective to precipitate polymeric nanoparticles comprising the polymer with the modified active agent nanoparticles dispersed therein.
Owner:SUTHERLAND ASBILL BRENNAN LLP +2

Stabilized Hme Composition With Small Drug Particles

A hot-melt extruded composition having finely divided drug-containing particles dispersed within a polymeric and/or lipophyllic carrier matrix is provided. The carrier softens or melts during hot-melt extrusion but it does not dissolve the drug-containing particles during extrusion. As a result, a majority or at least 90% wt. of the drug-containing particles in the extrudate are deaggregated during extrusion into essentially primary crystalline and/or amorphous particles. PEO is a suitable carrier material for drugs insoluble in the solid state in this carrier. Various functional excipients can be included in the carrier system to stabilize the particle size and physical state of the drug substance in either a crystalline and/or amorphous state. The carrier system is comprised of at least one thermal binder, and may also contain various functional excipients, such as: super-disintegrants, antioxidants, surfactants, wetting agents, stabilizing agents, retardants, or similar functional excipients. A hydrophilic polymer, such as hydroxypropyl methylcellulose (HPMC E15), polyvinyl alcohol (PVA), or poloxamer, and/or a surfactant, such as sodium lauryl sulfate (SLS), can be included in the composition. A process for preparing the extrudate is conducted at a temperature approximating or above the softening or melting temperature of the matrix and below the point of solubilization of drug-containing particles in the carrier system, and below the recrystallization point in the case of amorphous fine drug particles.
Owner:BOARD OF RGT THE UNIV OF TEXAS SYST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products