Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

208 results about "Polymeric nanoparticles" patented technology

Rapid Diffusion of Large Polymeric Nanoparticles in the Mammalian Brain

Non-adhesive particles as large as 110 nm can diffuse rapidly in the brain ECS, if coated with hydrophilic coatings such as PEG coatings and preferably having neutral surface charge. The ability to achieve brain penetration with larger particles will significantly improve drug and gene delivery within the CNS since larger particles offer higher drug payload, improved drug loading efficiency, and significantly longer drug release durations.
Owner:THE JOHN HOPKINS UNIV SCHOOL OF MEDICINE

Nanoparticles for drug-delivery

This invention relates to polymeric nanoparticles useful for drug delivery with target molecules bonded to the surface of the particles and having sizes of up to 1000 nm, preferably 1 nm to 400 nm, more preferably 1 nm to 200 nm, that are dispersed homogeneously in aqueous solution. The target drug / target substance is covalently bonded to the novel polymeric nanoparticles to secure them from outer intervention in vivo or cell culture in vitro until they are exposed at the target site within the cell. This invention also relates to microemulsion polymerization techniques useful for preparing the novel nanoparticles.
Owner:UNIV OF SOUTH FLORIDA

Compositions And Methods For Inhibiting Adhesions

The present invention provides compositions and methods for inhibiting adhesions. The methods involve administering solutions containing hydrogel precursors such as polysaccharide derivatives, e.g., derivatives of hyaluronic acid, cellulose, or dextran, to a subject at a site where adhesions may form, e.g., as a consequence of surgery, injury, or infection. The hydrogel precursors, e.g., polysaccharide derivatives, become crosslinked following their administration to form a hydrogel that maintains tissue separation. In certain embodiments of the invention one or both solutions contains particles, e.g., polymeric nanoparticles or microparticles, so that a composite hydrogel containing the particles is formed. The solution(s), particle(s), or both, may contain a biologically active agent such as an agent that contributes to inhibiting adhesions. The biologically active agent may be covalently attached to a hydrogel precursor.
Owner:EI DU PONT DE NEMOURS & CO +2

Polymeric nanoparticles with enhanced drug-loading and methods of use thereof

The invention is directed to modified polymers with increased drug-loading including compounds of formula (I): wherein Z is a poly(lactic-co-glycolic acid) (PLGA) polymer having molecular weight from 1-15 kDa and where the ratio of lactide to glycolide in the PLGA polymer is from 1:10 to 10:1; formula (II) R1 are independently H, R2, OH, O-alkyl, —O—R2, NH—R2, -linker-R2, or -and R2 are independently one or more therapeutic agents. The invention is also directed to nanoparticle drug delivery systems including a PLGA-b-PEG block copolymer; and a stabilizer and to drug delivery systems including PLGA-b-PEG block copolymer polyvinyl alcohol (PVA) nanoparticle; and the modified polymer substantially as described herein.
Owner:THE BRIGHAM & WOMEN S HOSPITAL INC

Degradable nanoparticles

InactiveUS20050196343A1Modulate release rateControl ratePowder deliveryBiocideCross linkerLinear polymer
The present invention relates to polymeric nanoparticles, particularly useful in drug and agent delivery, as well as for imaging and diagnosis. The polymeric nanoparticles of the present invention comprise cross-linkers that, when degraded, leave simple linear polymeric molecules that can be excreted by the body. The present invention also relates to methods of producing the polymeric nanoparticles of the present invention, and methods of using them in drug and agent delivery, as well as imaging and diagnosis.
Owner:NEXT GENERATION THERAPEUTICS

Water-dispersible oral, parenteral, and topical formulations for poorly water soluble drugs using smart polymeric nanoparticles

Polymeric nanoparticles with a hydrophobic core and a hydrophilic shell are formed from: 1) N-isopropyl acrylamide (NIPAAM), at a molar ratio of about 50% to about 90%, and preferably 60% for specific delivery routes such as oral or parenteral; either water-soluble vinyl derivatives like vinylpyrolidone (VP) or vinyl acetate (VA), or water insoluble vinyl derivatives like methyl methacrylate (MMA) or styrene (ST), at a molar ratio of about 10% to about 30%; and acrylic acid (AA), at a molar ratio of about 10% to about 30%. The formed nanoparticles may be optionally surface functionalized using reactive groups present in AA, including PEGylation, or conjugation of moieties such as chemotherapeutics, contrasting agents, antibodies, radionucleides, ligands, and sugars, for diagnostic, therapeutic, and imaging purposes. The polymeric nanoparticles are preferably dispersed in aqueous solutions. The polymeric nanoparticles incorporate one or more types of medicines or bioactive agents in the hydrophobic core; on occasion, the medicine or bioactive agent may be conjugated to the nanoparticle surface via reactive functional groups. The polymeric nanoparticles are capable of delivering the said medicines or bioactive agents through oral, parenteral, or topical routes. The polymeric nanoparticles allow poorly water soluble medicines or bioactive agents, or those with poor oral bioavailability, to be formulated in an aqueous solution, and enable their convenient delivery into the systemic circulation.
Owner:THE JOHN HOPKINS UNIV SCHOOL OF MEDICINE

Polymeric encapsulation of nanoparticles

Polymeric nanoencapsulation methods, which combine sonication and nonsolvent temperature induced crystallization, are provided. The steps include (a) providing active agent nanoparticles having an average diameter between about 5 and about 100 nm; (b) treating said active agent nanoparticles (e.g., a superparamagnetic material) with an anionic surfactant to form modified active agent nanoparticles; (c) mixing the modified active agent nanoparticles with a solution of a polymer in a solvent at a first temperature, which is greater than the melting temperature of the polymer and less than the boiling point of the solvent to form a first mixture, said mixing comprising the use of sonication; (d) mixing a non-solvent with the first mixture to form a second mixture, the non-solvent being a non-solvent for the solvent and for the polymer and having a boiling point greater than the melting temperature of the polymer; (e) sonicating the second mixture to form an emulsion; and (f) cooling the emulsion to a second temperature and at a rate effective to precipitate polymeric nanoparticles comprising the polymer with the modified active agent nanoparticles dispersed therein.
Owner:SUTHERLAND ASBILL BRENNAN LLP +2

Nanoparticles that facilitate imaging of biological tissue and methods of forming the same

Nanoparticles that facilitate imaging of biological tissue and methods for formulating the nanoparticles are provided. In order to form suitable nanoparticles for imaging, an anionic surfactant may be applied to superparamagnetic nanoparticles to form modified nanoparticles. The modified nanoparticles may be mixed with a polymer in a solvent to form a first mixture, and a non-solvent may be mixed with the first mixture to form a second mixture. An emulsion may be formed from the second mixture and the polymeric nanoparticles may be isolated from the emulsion. In certain embodiments of the invention, an antibody may be attached to the polymeric nanoparticles to facilitate attachment of the nanoparticles to biological tissue.
Owner:FLORIDA STATE UNIV RES FOUND INC

Polymeric core-shell nanoparticles with interphase region

A polymeric nanoparticle composition is provided. The nanoparticle may be of a core / shell configuration with an interphase region connecting the core and the shell. The mean average diameter of the polymer nanoparticles may be less than about 250 nm. The size, composition, and / or configuration of the interphase region may be varied to achieve desired physical and / or chemical properties of the resulting polymeric nanoparticles, and of the compositions into which the nanoparticles are compounded.
Owner:BRIDGESTONE CORP

Combined use of liquid polymer and polymeric nanoparticles for rubber applications

The present invention provides a rubber composition comprising (a) a liquid polymer, (b) polymer nanoparticles, and (c) a rubbery matrix. The composition may comprise less or even no aromatic oil. Rubber articles manufactured from such composition, such as tires and power belts, have gained improved reinforcement and controllable hysteresis properties.
Owner:BRIDGESTONE CORP

Hairy polymeric nanoparticles

This invention discloses a process for synthesizing a hairy polymer particle which comprises the steps of (1) polymerizing a vinyl aromatic monomer by emulsion polymerization in an aqueous medium to produce core particles, (2) recovering the core particles from the aqueous medium, (3) dispersing the core particles in an organic solvent, (4) adding an organo-lithium compound to the dried core particles in the organic solvent to produce the hairless core initiator, and (5) utilizing the hairless core initiator to initiate the anionic polymerization of a conjugated diolefin monomer in an organic solvent to produce a solution of the hairy polymer particles. The hairy polymer nanoparticles can then be recovered from the organic solvent. These hairy polymer particles are comprised of (1) a core which is comprised of a polymer of a vinyl aromatic monomer and (2) hairs which are polymer chains of a conjugated diolefin monomer, wherein the hairs are covalently bonded to the core. The core is typically spherical in shape, has a diameter of less than 1000 nm, and is comprised of a crosslinked polymer of a vinyl aromatic monomer. The hairy polymer particles of this invention are useful as fillers in rubber compositions used in making articles of manufacture, such as tires, hoses, power transmission belts, windshield wiper blades, and the like.
Owner:THE GOODYEAR TIRE & RUBBER CO

Non-spherical nanoparticles made from living triblock polymer chains

The present invention provides polymeric nanoparticles comprising triblock and optionally diblock copolymer chains. The architecture of the polymeric nanoparticles may be controlled, resulting in nanoparticles having non-spherical shapes. The present invention also provides a method of preparing the polymeric nanoparticles and a rubber article such as a tire manufactured from a formulation comprising the polymer nanoparticles.
Owner:BRIDGESTONE CORP

Non-spherical nanoparticles made from living triblock polymer chains

The present invention provides polymeric nanoparticles comprising triblock and optionally diblock copolymer chains. The architecture of the polymeric nanoparticles may be controlled, resulting in nanoparticles having non-spherical shapes. The present invention also provides a method of preparing the polymeric nanoparticles and a rubber article such as a tire manufactured from a formulation comprising the polymer nanoparticles.
Owner:BRIDGESTONE CORP

Hairy polymeric nanoparticles

This invention discloses a process for synthesizing a hairy polymer particle which comprises the steps of (1) polymerizing a vinyl aromatic monomer by emulsion polymerization in an aqueous medium to produce core particles, (2) recovering the core particles from the aqueous medium, (3) dispersing the core particles in an organic solvent, (4) adding an organo-lithium compound to the dried core particles in the organic solvent to produce the hairless core initiator, and (5) utilizing the hairless core initiator to initiate the anionic polymerization of a conjugated diolefin monomer in an organic solvent to produce a solution of the hairy polymer particles. The hairy polymer nanoparticles can then be recovered from the organic solvent. These hairy polymer particles are comprised of (1) a core which is comprised of a polymer of a vinyl aromatic monomer and (2) hairs which are polymer chains of a conjugated diolefin monomer, wherein the hairs are covalently bonded to the core. The core is typically spherical in shape, has a diameter of less than 1000 nm, and is comprised of a crosslinked polymer of a vinyl aromatic monomer. The hairy polymer particles of this invention are useful as fillers in rubber compositions used in making articles of manufacture, such as tires, hoses, power transmission belts, windshield wiper blades, and the like.
Owner:THE GOODYEAR TIRE & RUBBER CO

Polymeric adhesive including nanoparticle filler

InactiveUS20080249221A1Increase potential for homogeneous dispersionReduce load levelMaterial nanotechnologyNon-macromolecular adhesive additivesHalloysiteAdhesive
Disclosed is a novel polymeric nanoparticle adhesive composite including a nanoparticle filler and method for the production thereof. More particularly, the disclosure describes the use of nanoparticle fillers, including a novel halloysite nanoparticle filler which utilizes generally cylindrical or tubular nanoparticles (e.g. rolled scroll-like shape). The filler is effectively employed in a polymer nanoparticle adhesive composite, containing the halloysite nanoparticle or other equivalent naturally occurring nanotubular filler, in which the advantages of the nanoparticle filler are provided (e.g., reinforcement, flame retardant, etc.) while maintaining or improving mechanical performance of the adhesive composite (e.g., adhesive strength and tack)
Owner:NATURALNANO RES

Methods to form substrates for optical sensing by surface enhanced raman spectroscopy (SERS) and substrates formed by the methods

A method of manufacturing a substrate is provided. The method comprises, in some aspects, a) providing a support; b) forming a template by attaching a plurality of polymeric nanoparticles some or all having a core-shell structure to the support, wherein the core comprises a first polymer and the shell comprises a second polymer; and c) forming the metal nanoarray substrate by attaching a plurality of metallic nanoparticles to at least some of the polymeric nanoparticles of the template. A biosensor comprising a substrate manufactured by the method, and a method for the detection of an analyte in a sample by surface enhanced Raman spectroscopy (SERS) is also provided.
Owner:AGENCY FOR SCI TECH & RES

Biodegradable nanoparticles

The present invention relates to polymeric nanoparticles useful in drug and agent delivery, as well as for imaging, diagnosis and targeting. The polymeric nanoparticles of the present invention comprise polymers and cross-linkers that, when degraded, leave simple nontoxic biocompatible molecules that can be metabolized, excreted, or absorbed by the body. The present invention also relates to processes for producing the polymeric nanoparticles of the present invention, and methods of using them in drug and agent delivery, as well as imaging, diagnosis and targeting.
Owner:NEXT GENERATION THERAPEUTICS

Cross-linked polymeric nanoparticles and metal nanoparticles derived therefrom

There are provided internally cross-linked, stable polymeric materials, in the form of substantially spherical particles, each particle consisting essentially of a single macromolecule. They have the unusual property of being soluble or dispersible in a liquid medium without significantly increasing the viscosity of the medium, rendering them potentially useful in imaging applications such as ink jet printers. They can be prepared by dissolving polymeric material in a solvent system to form a solution of the polymeric material at a concentration therein of less than the critical concentration for the polymer, causing the polymeric material to contract into an approximately spheroidal conformation in solution, cross-linking the polymeric material in solution in said spheroidal conformation so assumed, and recovering stable, cross-linked approximately spheroidal polymeric particles from the solution.
Owner:G NANO

Highly Penetrative Nanocarriers for Treatment of CNS Disease

ActiveUS20150118311A1Improve survivalTreatment of brain tumorsBiocidePowder deliveryDrugs solutionNanocarriers
Brain-penetrating polymeric nanoparticles that can be loaded with drugs and are optimized for intracranial convection-enhanced delivery (CED) have been developed. In the preferred embodiment, these are loaded with FDA-approved compounds, identified through library screening to target brain cancer stem cells (BSCSs). The particles are formed by emulsifying a polymer-drug solution, then removing solvent and centrifuging at a first force to remove the larger particles, then collecting the smaller particles using a second higher force to sediment the smaller particles having a diameter of less than 100 nm, more preferably less than 90 nanometers average diameter, able to penetrate brain interstitial spaces.
Owner:YALE UNIV

Hairy Polymeric Nanoparticles With First And Second Shell Block Polymer Arms

ActiveUS20110213066A1Various characteristicRubber composition increaseFilm/foil adhesivesIndividual molecule manipulationMaterials sciencePolymeric nanoparticles
Compositions and methods are included for preparing a hairy polymeric nanoparticle including first and second shell block polymer arms are at least partially phase-separated and surround a polymeric core. One type of polymeric arm can have a greater polarity than the other type(s) of polymeric arms. A rubber composition including the hairy nanoparticles is also provided.
Owner:BRIDGESTONE CORP

Use of polymeric nanoparticles for vaccine delivery

The invention relates generally to the treatment and prevention of human cancer and viral diseases. More specifically, this invention relates to development of a new generation of vaccines that rely on eliciting cellular immune responses, specifically induction of cytotoxic T lymphocytes (CTL), against cancer cells and virus-infected cells via administration of a polymeric nanoparticle containing a vaccine comprising a fusion peptide or a modified peptide. Such a fusion peptide is composed of an insertion signal sequence and a peptide derived from a tumor antigen or a viral antigen, which improves antigen presentation and induces CTL with higher efficiency against cancer cells and virus-infected cells. An exemplary peptide utilized in the invention is Mart-1:27-35 peptide.
Owner:RGT UNIV OF CALIFORNIA

Formulation of Active Agent Loaded Activated PLGA Nanoparticles for Targeted Cancer Nano-Therapeutics

The present invention includes compositions and methods of making an activated polymeric nanoparticle for targeted drug delivery that includes a biocompatible polymer and an amphiphilic stabilizing agent non-covalently associated with a spacer compound that includes at least one electrophile that selectively reacts with any nucleophilic on a targeting agent and places the targeting agent on the exterior surface of a biodegradable nanoshell, wherein an active agent is loaded with the nanoshell.
Owner:UNIV OF NORTH TEXAS HEALTH SCI CENT

Methods for Ex Vivo Administration of Drugs to Grafts Using Polymeric Nanoparticles

Methods for ex vivo administration of drugs to grafts using polymeric micro- and nanoparticles and applications for these methods are described herein. The particles contain encapsulated molecules which are released locally at the site of implantation and function to prevent graft rejection or aid in the proper adaptation of the graft to the host. The disclosed methods may be used to inhibit or reduce hyperplasia and stenosis of vascular grafts or to prevent graft rejection.
Owner:YALE UNIV

Compositions and methods for controlled delivery of inhibitory ribonucleic acids

Polymeric nanoparticles encapsulating inhibitory ribonucleic acids (RNAs) and methods of their manufacture and use are provided. Advantageous properties of the nanoparticles include: 1) high encapsulation efficiency of inhibitory RNAs into the nanoparticles, 2) small size of the nanoparticles that increases cell internalization, and 3) sustained release of encapsulated inhibitory RNAs by the nanoparticles that allows for administration of an effective amount of inhibitory RNAs to cells or tissues over extended periods of time. Encapsulation efficiency of inhibitory RNAs into the nanoparticles is greatly increased by complexing the inhibitory RNAs to polycations prior to encapsulation. Methods of using the polymeric nanoparticles for treating or inhibiting diseases or disorders are provided.
Owner:YALE UNIV

Methods to form substrates for optical sensing by surface enhanced raman spectroscopy (sers) and substrates formed by methods

A method of manufacturing a substrate is provided. The method comprises, in some aspects, a) providing a support; b) forming a template by attaching a plurality of polymeric nanoparticles some or all having a core-shell structure to the support, wherein the core comprises a first polymer and the shell comprises a second polymer; and c) forming the metal nanoarray substrate by attaching a plurality of metallic nanoparticles to at least some of the polymeric nanoparticles of the template. A biosensor comprising a substrate manufactured by the method, and a method for the detection of an analyte in a sample by surface enhanced Raman spectroscopy (SERS) is also provided.
Owner:AGENCY FOR SCI TECH & RES

Compositions and methods for inhibiting adhesions

The present invention provides compositions and methods for inhibiting adhesions. The methods involve administering solutions containing hydrogel precursors such as polysaccharide derivatives, e.g., derivatives of hyaluronic acid, cellulose, or dextran, to a subject at a site where adhesions may form, e.g., as a consequence of surgery, injury, or infection. The hydrogel precursors, e.g., polysaccharide derivatives, become crosslinked following their administration to form a hydrogel that maintains tissue separation. In certain embodiments of the invention one or both solutions contains particles, e.g., polymeric nanoparticles or microparticles, so that a composite hydrogel containing the particles is formed. The solution(s), particle(s), or both, may contain a biologically active agent such as an agent that contributes to inhibiting adhesions. The biologically active agent may be covalently attached to a hydrogel precursor.
Owner:MASSACHUSETTS INST OF TECH +2

Method for manufacturing carbon quantum dots

There is provided a method for manufacturing carbon quantum dots. The method comprises the steps of a) providing a dispersion of self-assembled polymeric nanoparticles in a dispersion liquid. The nanoparticles comprise a copolymer, the copolymer comprising insoluble repeat units that are insoluble in the dispersion liquid and soluble repeat units that are soluble in the dispersion liquid. The nanoparticles have a core / shell structure in which a core is surrounded by a shell, the core being enriched in insoluble repeat units, and the shell being enriched in soluble repeat units. The method further comprises the step of b) carbonizing the core of the nanoparticles in the dispersion, thereby producing the desired carbon quantum dots.
Owner:TRANSFERT PLUS S E C

Nanoparticles for drug-delivery

This invention relates to polymeric nanoparticles useful for drug delivery with target molecules bonded to the surface of the particles and having sizes of up to 1000 nm, preferably 1 nm to 400 nm, more preferably 1 nm to 200 nm, that are dispersed homogeneously in aqueous solution. The target drug / target substance is covalently bonded to the novel polymeric nanoparticles to secure them from outer intervention in vivo or cell culture in vitro until they are exposed at the target site within the cell. This invention also relates to microemulsion polymerization techniques useful for preparing the novel nanoparticles.
Owner:UNIV OF SOUTH FLORIDA

Biodegradable stent formed with polymer-bioceramic nanoparticle composite and method of making the same

The present invention relates to biodegradable medical devices such as stents manufactured from biodegradable polymeric-bioceramic nanoparticle composites. The invented medical devices include at least one bioceramic nanoparticle dispersed in at least one biodegradable polymer, wherein the said biodegradable polymers include biodegradable polyesters. The device and methods to disperse one or more bioceramic nanoparticle, wherein the said bioceramic nanoparticle include, but are not limited to, amorphous calcium phosphate (ACP), dicalcium phosphate (DCP), tricalcium phosphate (TCP), pentacalcium hydroxyl Apatite (HAp), tetracalcium phosphate monoxide (TTCP) and combinations or analogues thereof. Other embodiments include methods of fabricating biodegradable stent with said polymeric-nanoparticle composites.
Owner:DR TIM WU
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products