Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1188 results about "Surface charges" patented technology

Methods for controlling blood pharmacokinetics of antibodies

ActiveUS20090324589A1Retain activityLimited half-lifeAnimal cellsFungiHalf-lifeBinding domain
The present inventors discovered that the half-life in blood of an IgG antibody which is a polypeptide comprising an FcRn-binding domain can be controlled by controlling the surface charge through modification of residues exposed on the surface among residues in the variable regions of the IgG antibody. Antibodies whose half-life in blood had been controlled by the methods of the present invention were confirmed to actually retain the original activity. The methods of the present invention are widely applicable to polypeptides comprising an FcRn-binding domain, such as IgG antibodies, which are recycled via the FcRn salvage pathway regardless of the type of target antigen.
Owner:CHUGAI PHARMA CO LTD

Electrospinning nano-fiber electret filtering material and its preparation method

ActiveCN104289042AHigh surface electrostatic potentialHigh super strong electrostatic adsorption performanceSynthetic resin layered productsFiltration separationPorosityFiber
The invention relates to an electrospinning nano-fiber electret filtering material and its preparation method. The high-efficiency and low-resistsance nano-fiber electret filtering material having no interfibrous adhesion and having a fluffy three-dimensional netted intercommunication structure is prepared through controlling the component and the temperatures of a polymer solution in an electrospinning process and carrying out one-step forming in the nano-fiber forming rapid cooling process, wherein the gram weight of the above nanofiber layer is 0.01-70g/m<2>, and the porosity is not less than 80%. The surface electrostatic potential of the nano-fiber electret filtering material is 800-6000V, and the surface charges have lasting storage stability, the hydrophobic angle is greater than 150DEG, the filtering efficiency of the material to particles of 0.006-1[mu]m can reach above 99.999%, the piezoresistance is less than 20Pa, and the dust containing capacity is 300-3600g/m<2>. The preparation method is simple, and the filtering material has wide application prospects in the fields of individual protection mouth mask filtration, indoor air purification and filtration, and high efficiency/ultrahigh efficiency air filtration.
Owner:DONGHUA UNIV

Nanoparticle and surface-modified particulate coatings, coated balloons, and methods therefore

Devices, coatings, and methods therefore comprise a medical device for delivering nanoparticles of an active agent to a treatment site. A coating on the medical device comprises active agent nanoparticles, which delivers coating to the treatment site and releases active agent nanoparticles into the treatment site over at least one day. A coating may comprise a polymer, a surfactant, and the nanoparticles. The coating may be prepared by forming a nanoemulsion. A coating may comprise encapsulated active agent nanoparticles which comprise active agent nanoparticles encapsulated in a polymer. The coating may have a positive surface charge. The coating may deliver active agent nanoparticles into the treatment site over at least about one day. The coating may be formed of a surfactant and nanoparticles mixture. The active agent nanoparticles may be deposited on the medical device using electrostatic capture.
Owner:MICELL TECH INC

Enhanced hard bias in thin film magnetoresistive sensors with perpendicular easy axis growth of hard bias and strong shield-hard bias coupling

A hard bias (HB) structure for longitudinally biasing a free layer in a MR sensor is disclosed that is based on HB easy axis growth perpendicular to an underlying seed layer which is formed above a substrate and along two sidewalls of the sensor. In one embodiment, a conformal soft magnetic layer that may be a top shield contacts the HB layer to provide direct exchange coupling that compensates HB surface charges. Optionally, a thin capping layer on the HB layer enables magneto-static shield-HB coupling. After HB initialization, HB regions along the sensor sidewalls have magnetizations that are perpendicular to the sidewalls as a result of surface charges near the seed layer. Sidewalls may be extended into the substrate (bottom shield) to give enhanced protection against side reading. The top surface of the seed layer may be amorphous or crystalline to promote HB easy axis perpendicular growth.
Owner:HEADWAY TECH INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products