Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1627 results about "Heterogeneous catalysis" patented technology

Heterogeneous catalysis is the type of catalysis where the phase of the catalyst differs from the phase of the reactants or products. Contrasts with homogeneous catalysis where the reactants, products and catalyst exist in the same phase. Phase distinguishes between not only solid, liquid, and gas components, but also immiscible mixtures (e.g. oil and water), or anywhere an interface is present. Catalysts are useful because they increase the rate of a reaction without themselves being consumed and are therefore reusable.

Hydrogenation method for coal tar suspension bed of heterogeneous catalyst

The invention relates to a hydrogenation method for a coal tar suspension bed of a heterogeneous catalyst. The method comprises processes of coal tar raw material pretreatment and distillatory separation, coal tar heavy fraction suspension bed hydrogenation cracking and conventional light fraction oil extraction, wherein the suspension bed hydrogenation reaction temperature is between 320 and 480DEG C, the reaction pressure is 8 to 19MPa, the volume air speed is 0.3 to 3.0h<-1>, the hydrogen oil volume ratio is 500 to 2,000, the catalyst is a powdery granular coal tar suspension bed hydrogenation catalyst of a single metal active ingredient containing molybdenum, nickel, cobalt, tungsten or iron or a composite multi-metal active ingredient, the adding amount of the catalyst is based on the ratio of the metal quantity of the active ingredient to the weight of the coal tar raw materials of 0.1: 100-4: 100, most of tail oil containing the catalyst after lightweight oil is separated froma hydrogenation reaction product is directly circulated to a hydrogenation bed reactor, a small part of tail oil is subjected to catalyst removal treatment and then circulated to the hydrogenation bed reactor to be subjected to further lightweight treatment, and the heavy oil is totally or furthest circulated. The method fulfills the purposes of maximum production of the lightweight oil in the coal tar and cyclic utilization of the catalyst, and greatly improves the utilization efficiency of the raw materials and the catalyst.
Owner:CCTEG CHINA COAL RES INST

Pinpoint enhanced dark-field microscope, electrochemical testing device and leveling system

The invention provides a pinpoint enhanced dark-field microscope, an electrochemical testing device and a leveling system. The pinpoint enhanced dark-field microscope is characterized by using an optical fiber probe, wherein metal nanometer particles for decoration are arranged at the pinpoint of the optical fiber probe, incident lights are transmitted inside the optical fiber probe which is provided with the metal nanometer particles for decoration, and the distance between the pinpoint and a sample adopts a light intensity control mode; and the pinpoint enhanced dark-field microscope is a localized surface plasmon resonance dark-field coupling device which utilizes the near-field coupling function of the nanometer metal particles at the pinpoint of the probe and a metal substrate material. The microscope can be used for researching basic surface and interface chemical problems such as a double-electric-layer structure of a substrate surface, adsorption/desorption behaviors and multi-phase catalysis. In addition, based on the LSPR (Localized Surface Plasmon Resonance) distance sensitiveness principle, the pinpoint enhanced dark-field microscope can be applied to a three-probe horizontal sensor to perform self-adaptive leveling on a nanometer processing platform.
Owner:XIAMEN UNIV

Method for low-temperature atmosphere-pressure hydrothermal synthesis of stephanoporate metal-organic framework

The invention discloses a method for hydrothermally synthesizing a porous metal-organic framework under low temperature and normal pressure, which comprises the following steps: 1) bivalent transition metal salt is put into proper amount of distilled water to be dissolved; 2) a multidentate organic ligand is put into proper amount of distilled water, and ammonia (30 percent, W/W) is added into the solution until the organic ligand is dissolved; 3) solutions obtained in step 1) and step 2) are mixed, and diluted by the distilled water; 4) the solution obtained in step 3) reacts for 4 to 24h at a temperature of between 80 and 100 DEG C, and is naturally cooled to room temperature at an environmental temperature to obtain an MOF crystal product; and 5) the MOF crystal product obtained in step 4) is filtered, MOF crystals are colleted and washed by the distilled water and absolute ethyl alcohol respectively, and the product is obtained after the natural drying. By performing a hydrothermal reaction in an ammonia solution, the method has mild conditions needed by the synthesis, less energy consumption and time consumption, and does not need a voltage resistant reactor. Therefore, the method is simpler and has lower cost; and a porous crystal material obtained by the synthesis has potential application value in the fields of gas separation, gas storage and heterogeneous catalysis.
Owner:CHONGQING UNIV

Process for producing fatty acid alkyl esters and glycerol of high-purity

In a process for producing fatty acid alkyl esters and glycerol comprising at least one reaction stage in which a charge comprising a vegetable and / or animal oil and an alcohol are brought into contact, in the presence of a heterogeneous catalyst, so as to obtain an effluent comprising at least alkyl esters, glycerol and alcohol, and at least one separation stage during which a separation is carried out of at least one portion of the effluent so as to separate an alcohol-rich effluent and an alkyl esters-rich effluent, at least one separation stage consists of a membrane separation using at least one alcohol-permeable membrane.
Owner:INST FR DU PETROLE

Method and system for forming plug and play metal catalysts

A metal catalyst is formed by vaporizing a quantity of metal and a quantity of carrier forming a vapor cloud. The vapor cloud is quenched forming precipitate nanoparticles comprising a portion of metal and a portion of carrier. The nanoparticles are impregnated onto supports. The supports are able to be used in existing heterogeneous catalysis systems. A system for forming metal catalysts comprises means for vaporizing a quantity of metals and a quantity of carrier, quenching the resulting vapor cloud and forming precipitate nanoparticles comprising a portion of metals and a portion of carrier. The system further comprises means for impregnating supports with the nanoparticles.
Owner:UMICORE AG & CO KG +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products