Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

259 results about "Localized surface plasmon" patented technology

A localized surface plasmon (LSP) is the result of the confinement of a surface plasmon in a nanoparticle of size comparable to or smaller than the wavelength of light used to excite the plasmon. The LSP has two important effects: electric fields near the particle’s surface are greatly enhanced and the particle’s optical absorption has a maximum at the plasmon resonant frequency. The enhancement falls off quickly with distance from the surface and, for noble metal nanoparticles, the resonance occurs at visible wavelengths. For semiconductor nanoparticles, the maximum optical absorption is often in the near-infrared and mid-infrared region.

Plasmonic and photonic resonator structures and methods for large electromagnetic field enhancements

Devices for producing localized surface plasmon resonances are described having a plasmonic resonator and a photonic structure electromagnetically coupled to the plasmonic resonator. The device can include a hybrid photonic plasmonic resonator that contains plasmonic and photonic resonators, and are optionally coupled to a photonic waveguide, or a plasmonic resonator coupled directly to a photonic waveguide. The plasmonic resonator can be one or more nanoparticles. The devices can produce substantial increases in coupling efficiencies and sensitivity for use in several applications, including SERS and refractive index sensing.
Owner:GEORGIA TECH RES CORP

Pinpoint enhanced dark-field microscope, electrochemical testing device and leveling system

The invention provides a pinpoint enhanced dark-field microscope, an electrochemical testing device and a leveling system. The pinpoint enhanced dark-field microscope is characterized by using an optical fiber probe, wherein metal nanometer particles for decoration are arranged at the pinpoint of the optical fiber probe, incident lights are transmitted inside the optical fiber probe which is provided with the metal nanometer particles for decoration, and the distance between the pinpoint and a sample adopts a light intensity control mode; and the pinpoint enhanced dark-field microscope is a localized surface plasmon resonance dark-field coupling device which utilizes the near-field coupling function of the nanometer metal particles at the pinpoint of the probe and a metal substrate material. The microscope can be used for researching basic surface and interface chemical problems such as a double-electric-layer structure of a substrate surface, adsorption / desorption behaviors and multi-phase catalysis. In addition, based on the LSPR (Localized Surface Plasmon Resonance) distance sensitiveness principle, the pinpoint enhanced dark-field microscope can be applied to a three-probe horizontal sensor to perform self-adaptive leveling on a nanometer processing platform.
Owner:XIAMEN UNIV

Dynamic Terahertz Switch Using Periodic Corrugated Structures

A subwavelength terahertz (THz) switch using an artificially designed conductor metamaterial is discussed in this invention. Theoretically, slow-light EM wave propagating at THz speed imitates the strongly localized surface plasmon modes and henceforth is called Spoof Surface Plasmon Polariton (SSPP) mode in this invention. The SSPP mode of slow-light EM propagation can be easily tailored by changing the refractive index of the dielectric materials inside the metallic gap structure engineered as a periodic array of grooves. Thus, the incorporation of electro-optical material which has birefringence such as a nematic liquid crystal (N-LC) or multiple-refractive indices into the metallic gap leads to a highly compact and efficient terahertz switch being controlled by a low-voltage signal. The optimal design of the SSPP switch enabled by this novel method shows many interesting properties including 1) strong subwavelength localization; 2) relatively high extinction (On / Off switching) ratio; and 3) small damping attenuation. The THz dynamic switches can be used to construct linear switches, Y junction switches and Mach-Zehnder interferometers by using micromachining and other fabrication techniques.
Owner:MAZUMDER PINAKI

Microarray chip without solid wall based on LSPR (Localized Surface Plasmon Resonance) and application thereof

The invention discloses a microarray chip without solid walls based on LSPR (Localized Surface Plasmon Resonance) and application thereof. The substrate of the microarray chip is in a hydrophilic and hydrophobic mode and comprises a base, a plurality of hydrophilic regions and hydrophobic regions, wherein the hydrophilic regions are arranged on the base; the hydrophobic regions separate the hydrophilic regions; the surfaces of the hydrophilic regions are provided with metal nanometer material layers with local area surface plasma resonance attributes; the outer regions of the hydrophilic regions are not provided with the solid walls; the surfaces of the hydrophobic regions are provided with hydrophobic material layers. The microarray chip disclosed by the invention can be obtained by combining a peculiar affinitive molecule for detecting a substance to be detected on the substrate provided by the invention. The microarray chip disclosed by the invention has the advantages of easiness and convenience for use, low detection cost, accurate result, reusability, and the like, can be used for detecting multiple substances, such as micromolecules, heavy metal ions, proteins, bacteria, viruses, and the like, and has wide application prospect in the fields of medical health, environmental monitoring, scientific experiments, and the like.
Owner:TSINGHUA UNIV

Illumination device

ActiveUS20130286633A1Improving wavelength conversion processEnhanced couplingProjectorsDiffraction gratingsResonancePhosphor
Proposed is an illumination device (100), comprising a light source (110) such as an LED or a laser diode, a wavelength conversion medium (120) such as a phosphor, and a periodic antenna array (300) made of a highly polarisable material such as a metal. The light source emits primary wavelength light that at least partially is converted in secondary wavelength light by the wavelength conversion medium. The periodic antenna array is positioned in close proximity to the wavelength conversion medium and functions to enhance the efficiency of the absorption and / or emission processes in the wavelength conversion medium through the coupling of the incident primary wavelength light or the emitted secondary light to surface lattice resonances that arise from the diffractive coupling of localized surface plasmon polaritons in the individual antennas of the array. This is especially advantageous for forming low étendue illumination device suitable for use in projection systems, or for controlling the directionality, the polarization, and / or the color of the secondary wavelength light.
Owner:LUMILEDS

Enzymatic assay for lspr

The present invention provides a method of detecting changes in the refractive index at the surface of a localized surface plasmon resonance (LSPR) detection system. The method includes generating an insoluble product from an enzymatic substrate using an immobilized enzyme, wherein the insoluble product accumulates at a LSPR supporting surface. The method also includes detecting changes in the reflected or transmitted light of the surface arising from the presence of the insoluble product using LSPR.
Owner:LAMDAGEN CORP

Method for preparing gold nano-rods

The invention discloses a method for preparing gold nano-rods. The method includes the steps: adding chloroauric acid solution and optional gold seed generating regulating agents into CTAB (cetyl trimethyl ammonium bromide) solution, adding silver nitrate solution, weak reducing agents and strong reducing agents into the CTAB solution and reacting at the constant temperature of 25-40 DEG C for 5-30min to obtain reaction liquid A; and adding silver nitrate solution, optional gold nano-rod growth regulating agent solution and water into the reaction liquid A to obtain reaction liquid B, and continuing reaction to obtain the gold nano-rods. The method is simple in process and operation and fine in reproducibility, the diameter of coverage of the prepared gold nano-rods is as small as 5nm to tens of nanometers, LSPR (localized surface plasmon resonance) peak value coverage in the length direction ranges from 630nm to 1010nm, counts in a TEM (transmission electron microscopy) graph indicate that more than 90% of rod products among obtained gold nano-particle products are high in rod yield, and the ratio of an LSPR peak value to a TSPR (transverse surface plasmon resonance) peak value is not lower than 2 in a UV-Vis (ultraviolet visible) absorption spectrogram. Raw materials used in the method are widely and easily obtained, and production cost is low.
Owner:GUANGZHOU CLUSTERBIOPHOTON TECH CO LTD

Sensor for nano gold particles and preparation method thereof

The invention provides a sensor for nano gold particles and a preparation method thereof. The end surface of a multi-core optical fiber is of a conical-platform structure; a total-reflection film is plated on the surface of the conical platform; the nano gold particles which are distributed regularly are fixed on the end surface of the optical fiber plated with the total-reflection film; exciting light is injected into one fiber core of the multi-core optical fiber, is reflected to the end surface of the optical fiber at the film-plated position of the conical platform and generates total internal reflection on the end surface of the optical fiber, and a generated evanescent field excites a localized surface plasmon resonance effect of the nano gold particles; the reflected light is collected by the fiber core symmetrical to the fiber core injected with the exciting light, and the change of the physical quantity of external substances is sensed by the spectrum of the reflecting light. The sensor and the preparation method have the advantages that the multi-core optical fiber, a self-assembly technology of a near-field optical tweezer and the localized surface plasmon resonance effect of the nano gold particles are combined, and the near-field optical tweezer of the multi-core optical fiber can be utilized for capturing the nano gold particles, so that the optical self-assembly and regular distribution is carried out on the nano gold particles according to the distribution rule of the capturing areas; the structure is simple, the volume is smaller and the repeatability is high.
Owner:HARBIN ENG UNIV

System and method for controlling deposition parameters in producing a surface to tune the surface's plasmon resonance wavelength

A system and method are disclosed which enable deposition parameters to be controlled in producing a metal surface to tune the localized surface plasmon resonance (LSPR) wavelength of such metal surface to a desired wavelength. For example, the surface produced may be used as an enhancement surface within a surface-enhanced spectroscopy process, wherein such surface is produced having a LSPR wavelength that provides the maximum extinction of a particular excitation light. In one embodiment, a metal is deposited onto a substrate, while controlling one or more deposition parameters to tailor the LSPR of the resulting metal surface to a desired wavelength. In one embodiment, the substrate is smooth, and does not require a mask prearranged thereon for controlling the LSPR wavelength. Rather, deposition parameters, such as temperature of the substrate, deposition rate, and film thickness may be controlled to effectively tune the LSPR wavelength of the metal surface.
Owner:ZYVEX LABS LLC

Solid state illumination device having plasmonic antenna array for anisotropic emission

There is provided an illumination device (100, 150, 200, 300) comprising: a periodic plasmonic antenna array (114), comprising a plurality of individual antenna elements (106) arranged in an antenna array plane, the plasmonic antenna array being configured to support surface lattice resonances at a first wavelength, arising from diffractive coupling of localized surface plasmon resonances in the individual antenna elements; a photon emitter (152) configured to emit photons at the first wavelength, the photon emitter being arranged in close proximity of the plasmonic antenna array such that at least a portion of the emitted photons are emitted by a coupled system comprising said photon emitter and said plasmonic antenna array, wherein the plasmonic antenna array is configured to comprise plasmon resonance modes being out-of plane asymmetric, such that light emitted from the plasmonic antenna array has an anisotropic angle distribution.
Owner:LUMILEDS

Mobile/wearable devices incorporating lspr sensors

Sensor chips and devices that incorporate localized surface plasmon resonance (LSPR) sensors are described which are suitable for use in near-patient and point-of-care diagnostic testing. In some embodiments, LSPR sensors are integrated with microfabricated fluidics and other system components to create compact, portable bench-top or hand-held diagnostic testing systems. In some embodiments, all components are packaged in compact, portable wearable devices.
Owner:LAMDAGEN CORP

Photo-catalytic Systems for Production of Hydrogen

A system for splitting water and producing hydrogen for later use as an energy source may include the use of a photoactive material including PCCN and plasmonic nanoparticles. A method for producing the PCCN may include a semiconductor nanocrystal synthesis and an exchange of organic capping agents with inorganic capping agents. The PCCN may be deposited between the plasmonic nanoparticles and may act as photocatalysts for redox reactions. The photoactive material may be used in presence of water and sunlight to split water into hydrogen and oxygen. Production of charge carriers may be triggered by photo-excitation and enhanced by the rapid electron resonance from localized surface plasmon resonance of plasmonic nanoparticles. By combining different semiconductor materials for PCCN and plasmonic nanoparticles and by changing their shapes and sizes, band gaps may be tuned to expand the range of wavelengths of sunlight usable by the photoactive material. The system may include elements for collecting, transferring, and storing hydrogen and oxygen, for subsequent transformation into electrical energy.
Owner:SUNPOWER TECH CORP

Surface enhanced Raman scattering microfluidic system based on PDMS three-dimensional micro-nano antenna

The invention provides a surface enhanced Raman scattering microfluidic system based on PDMS three-dimensional micro-nano antenna, which is used for molecular detection. A PDMS micro-nano antenna structure is adopted as a silver nanoparticle carrier, a layer of graphene covers the silver nanoparticle carrier so as to form a PDMS / silver nanoparticle / graphene-based Raman scattering base with the three-dimensional micro-nano antenna structure, which is taken as a detection area; a laser light source and a spectrograph are connected with an optical fiber and an SERS (Surface-Enhanced Raman Scattering) probe, and irradiate the detection area of a microchannel; the microchannel adopts PDMS materials. According to the system, graphene protects the oxidization of silver nanoparticles on one hand, and brings high chemical reinforcement on the other hand; the PDMS three-dimensional micro-nano antenna structure has a large specific surface area and more Raman enhanced hot points, effectively reinforces the filling effect of the silver nanoparticles, and is beneficial to localized surface plasmon resonance, and the strength of Raman scattering signals is enhanced; according to the system, the PDMS materials and the optical fiber are coupled, the manufacturing process is simple, the cost is low, and portable and on-line detection of molecules can be realized conveniently.
Owner:CHONGQING UNIV

Preparation process of single nanoparticle and array-based biological molecule detector thereof

The invention relates to a method which is developed on the basis of the impacts of biological molecules on the single nanoparticle localized surface plasmon resonance effect and uses a localized surface plasmon resonance spectrum for detecting biological molecules, thereby solving the controllable preparation of the nanoparticle and eliminating non-specific absorption and parasitic light signalsduring the detection on the basis of positioning, orienteering, being coupled with a microfluidic system and optimizing a signal collection region in a micro-channel. The invention comprises the stepsof using the vapor deposition technology and the advanced preparation technology of micro-nano materials and structures to prepare the identifiable signal nanoparticle or a particle array in a micro-fluid, integrating the single nanoparticle or the particle array in the micro-channel, further modifying and functionalizing the surface thereof and using an optical signal generated by the impacts ofthe biological molecules on the nanoparticle localized surface plasmon resonance effect for detecting the type and the concentration of the biological molecules in the fluid. Therefore, a high-yieldsuper-sensitive chip-based biological molecule detector is constructed in the micro-channel.
Owner:宋玉军

Sensing chip of dual-detecting biochemical sensing detector and preparation method thereof

The invention discloses a sensing chip of a dual-detecting biochemical sensing detector and a preparation method thereof. The sensing chip comprises a sensing chip unit arranged in a K*L array, wherein the sensing chip unit comprises a substrate and an upper slice bonded with the substrate together; an inlet, an outlet and a microcavity which are formed in the upper slice to form a micro-flow channel; and nano particles arranged in an m*n array, which are formed on the substrate and located in the microcavity, wherein m, n, K and L are natural number. The sensing chip provided by the invention is a multi-unit and multi-array structure and combined with a micro-flow control technology to integrate a micro-flow control optical sensing system. With the adoption of a nano processing technique with low cost, the sensing chip can be processed on a large area; furthermore, the sensing chip is good in repeatability, simple in preparation method and few in required samples; the sensing chip can observe in real time, perform the parallel test of multiple channels and parameters and the tests of in-situ surface enhanced raman scattering (SERS) and localized surface plasmon resonance (LSPR).
Owner:MINZU UNIVERSITY OF CHINA

Thin film solar cell with improved photoelectric conversion efficiency and manufacturing method thereof

The invention belongs to the technical field of solar cells, and particularly relates to a thin film solar cell with improved photoelectric conversion efficiency and a manufacturing method thereof. The thin film solar cell is manufactured by adding a periodic nanometer-sized metallic aluminum cylinder to a surface electrode of the conventional thin film solar cell, and introducing the localized surface plasmon resonance effect, so that the absorption efficiency is greatly improved; therefore, the photoelectric conversion efficiency of the solar cell is improved. Compared with the conventional silicon thin film solar cell, the silicon thin film solar cell into which the nanometer-sized aluminum cylinder is added has the advantage of high conversion efficiency, and the technology can be implemented by only adding one photoetching process. Compared with the precious metal silver commonly used for plasmon enhancement, the metallic aluminum has the advantages that the production cost can be greatly lowered while the same (slightly higher) absorption enhancement effect is achieved by using the metallic aluminum.
Owner:FUDAN UNIV

Localized surface plasmon resonance sensing system, appartatus, method thereof

A sensing system comprises a light source, an optical fiber, a plurality of noble metal nano-particles, a micro-fluidic module and a photo detector. The optical fiber couples an incident light. The plurality of noble metal nano-particles are disposed on a surface of the optical fiber to form a noble metal nano-particle submonolayer, the noble metal nano-particles are substantially separated from each adjacent noble metal nano-particles such that the conductivity of the noble metal nano-particle submonolayer is smaller than that of a metal film. The micro-fluidic module accommodates the optical fiber and a sample, and the sample is driven to contact with the noble metal nano-particles. The photo detector detects an emergent light from the optical fiber. When the incident light interacts with the noble metal nano-particles, a signal derived from localized surface plasmon resonance in form of attenuated light or elastic scattered light is outputted through the photo detector.
Owner:INSTANT NANOBIOSENSORS CO LTD

Sensor chip, detection device, and method of manufacturing sensor chip

A sensor chip includes a substrate, a relief structure composed of protruding sections formed so as to be arranged on a surface of the substrate to have a lattice shape and a recessed section between the protruding sections, and fine metal particles arranged along upper ridge lines of the respective protruding sections of the relief structure, the protruding sections being adjacent to each other, having a minute gap with which the surface plasmon resonance occurs. By irradiating the gap between the fine metal particles with a laser beam, the localized surface plasmon resonance occurs more efficiently. As a result, the sensor chip capable of taking out the surface enhanced Raman scattering to thereby detect the substance with high sensitivity can be realized.
Owner:SEIKO EPSON CORP

Trapping of micro and NANO scale objects based on localized surface plasmon

Methods for optically trapping and manipulating micro- and nano-sized particles by using light to induce localized surface plasmon resonance on metallic surface of a substrate. The method includes the steps of contacting a substrate with a medium having particles suspended therein; focusing a beam of coherent light onto the substrate such that the beam induces surface plasmon resonance; and trapping at least one of the suspended particles using a light induced dielectrophoresis force generated by the surface plasmon resonance.
Owner:UNIV OF WASHINGTON

Transmissive metal grating coupling spr detection chip and detector

The invention discloses a transmission-type metal grating coupling SPR detection chip and a detection instrument, which are used for detecting target analytes in microfluids. The detection chip includes: a light-transmitting substrate; a metal film layer with a grating structure formed on the substrate; and a microfluidic layer covering the surface of the metal film layer, and microfluidic channels are distributed in the microfluidic layer, and The microfluidic channels are in contact with the metal membrane surface. The detector includes a light source, a spectrometer and the aforementioned detection chip. The invention utilizes the local characteristics of the surface plasmons and the frequency selection characteristics of the grating to realize signal enhancement and filtering, and detects the change of the peak value of the transmittance by measuring the change of the peak value of the transmittance after the incident light is coupled through the grating. Changes in biological information or concentration. The invention does not need to change the angle of the incident angle during detection, and has the advantages of real-time monitoring, high sensitivity, stability and speed, small size of the instrument, and convenient portability and operation.
Owner:SUZHOU INST OF NANO TECH & NANO BIONICS CHINESE ACEDEMY OF SCI

Organic light-emitting diode, array substrate and preparation method thereof, and display device

The present invention relates to an organic light-emitting diode, an array substrate and a preparation method thereof, and a display device. The organic light-emitting diode comprises an anode, a cathode, a light-emitting layer disposed between the anode and the cathode, and a hole injection layer disposed between the anode and the light-emitting layer, wherein the hole injection layer is provided therein with metal nanoparticles, and the frequency of a localized surface plasmon resonance of the metal nanoparticles is matched with the emission wavelength of the light-emitting layer. As the organic light-emitting diode is doped with metal nanoparticles in the hole injection layer and the resonance frequency of the localized surface plasmon of the metal nanoparticles is matched with the emission wavelength of the light-emitting layer, the metal nanoparticles are allowed to generate localized plasma resonance with photons, so that the light extraction efficiency of the organic light-emitting diode is enhanced.
Owner:BOE TECH GRP CO LTD

Nanoparticle Plasmonic Sensor for Localized Surface Plasmon Resonance

The present invention provides a sensor for detecting the binding of molecules to membrane surfaces. The sensor comprises a nanoparticle coated with a continuous layer of silica, and having a ligand attached thereto, for detection of an analyte in a solution. The nanoparticle can be further coated with a continuous membrane, such as a lipid bilayer.
Owner:RGT UNIV OF CALIFORNIA

Detection, Capture and Quantification of Biological Moieties from Unprocessed Bodily Fluids Using Nanoplasmonic Platform

A nanoplasmonic platform can be used for the detection and quantification of multiple HIV subtypes in whole blood with localized surface plasmon resonance. Among other things, this nanoplasmonic platform provides a viable way to detection and quantification of viral load at a point of care with significantly less cost, time, and laboratory resources than existing methods of detection. Although an example of HIV detection in whole blood is provided, the nanoplasmonic platform is adaptable to detect other pathogens and infectious agents or macromolecules.
Owner:THE BRIGHAM & WOMEN S HOSPITAL INC

Structure, chip for localized surface plasmon resonance sensor, localized surface plasmon resonance sensor, and fabricating methods therefor

Implemented is a chip for localized surface plasmon resonance sensor, which is able to provide a localized surface plasmon resonance sensor of higher sensitivity. A structure of the invention is characterized by including a planar section and tubular bodies, wherein the tubular bodies are vertically arranged so that openings thereof open at the planar surface of the planar section, an average inner diameter of the openings of the tubular bodies is within a range of from 5 nm to 2,000 nm, a ratio (A / B) of inner diameter A of the openings of the tubular bodies and inner diameter B at the midpoint of the depth from the openings of the tubular bodies is within a range of from 1.00 to 1.80, and the bottom of the tubular bodies is aspherical.
Owner:NAT INST OF ADVANCED IND SCI & TECH +1

Method of detecting bioproducts using localized surface plasmon resonance sensor of gold nanoparticles

Disclosed is a method of detecting bioproducts using Localized Surface Plasmon Resonance (LSPR) of gold nanoparticles, which can diagnose bioproducts based on changes in the maximum wavelength occurred by an antigen-antibody reaction after immobilization of the gold nanoparticles onto a glass panel. A sensor using such method exhibits high sensitivity, is low in price, and makes quick diagnosis possible, thereby being applicable to various biological fields associated with environmental contaminants, pathogens and the like, as well as diagnosis of diseases. Further, it provides a technology for manufacturing a sensor having higher sensitivity, low price and quick performance, as compared to conventional methods using SPR.
Owner:RES & BUSINESS FOUND SUNGKYUNKWAN UNIV

Spatial positioning of photon emitters in a plasmonic illumination device

There is provided an illumination device (100) comprising: a substrate (104); an optically transmissive first layer (106) arranged on the substrate; a photon emitting layer (108), arranged on the optically transmissive first layer and comprising a photon emitting material configured to receive energy from an energy source and to emit light having a predetermined wavelength; a periodic plasmonic antenna array, arranged on the substrate and embedded within the first layer, and comprising a plurality of individual antenna elements (114) arranged in an antenna array plane, the plasmonic antenna array being configured to support a first lattice resonance at the predetermined wavelength, arising from coupling of localized surface plasmon resonances in the individual antenna elements to photonic modes supported by the system comprising the plasmonic antenna array and the photon emitting layer, wherein the plasmonic antenna array is configured to comprise plasmon resonance modes such that light emitted from the plasmonic antenna array has an anisotropic angle distribution; and wherein the photon emitting layer is arranged at a distance from the antenna array plane corresponding to a location of maximum field enhancement for light out-coupling resulting from the plasmonic-photonic lattice resonances.
Owner:LUMILEDS

Plasmonic nanoparticles and lspr-based assays

Compositions, methods, devices, and systems are described for performing single-step, homogenous, localized surface plasmon resonance (LSPR)-based plasmonic assays having exceptional assay sensitivity and extremely low limits of detection (LODs). Ag / Au core / shell nanoparticles are described, which may be used with LSPR sensors to develop single-step, homogeneous, LSPR-based assays.
Owner:LAMDAGEN CORP

Localized surface plasmon resonance based super resolved total internal reflection fluorescence imaging apparatus, and detection module therefor

A total internal reflection fluorescence imaging apparatus according to an embodiment of the invention includes: a metal nanostructure layer, which includes a metal thin film and a nanostructure formed over the metal thin film; a light source unit, which provides incident light such that the incident light is totally reflected off the metal nanostructure layer and an evanescent wave localized in a horizontal direction is created between the metal nanostructure layer and a specimen arranged over the metal nanostructure layer; and a fluorescence image extracting unit, which extracts and images a fluorescence signal generated by the specimen due to the evanescent wave localized in a horizontal direction.
Owner:IND ACADEMIC CORP FOUND YONSEI UNIV

Preparation method of localized surface plasmon resonance (LSPR) microfluidic chip

The invention discloses a preparation method of localized surface plasmon resonance (LSPR) microfluidic chip. The preparation method includes preparation of microfluidic chip, and chip modification. The preparation method has the advantages of easily-available materials, low cost, repeatable use, simple modification method, good reproducibility and good stability, can be directly used for rapid detection of various biological samples, and has potential wide application in life sciences and medical clinical detection.
Owner:FUZHOU UNIV

Calibrating single plasmonic nanostructures for quantitative biosening

A method for calibrating multiple nanostructures in parallel for quantitative biosensing using a chip for localized surface plasmon resonance (LSPR) biosensing and imaging. The chip is a glass coverslip compatible for use in a standard microscope with at least one array of functionalized plasmonic nanostructures patterned onto it using electron beam nanolithography. The chip is used to collect CCD-based LSPR imagery data of each individual nanostructure and LSPR spectral data of the array. The spectral data is used to determine the fractional occupancy of the array. The imagery data is modeled as a function of fractional occupancy to determine the fractional occupancy of each individual nanostructure.
Owner:THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE NAVY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products