Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3005 results about "Frequency selection" patented technology

Frequency-dependent selection occurs when the fitness of a genotype depends on its frequency. It is possible for the fitness of a genotype to increase (positively frequency-dependent) or decrease (negatively frequency-dependent) as the genotype frequency in the population increases. Examples of frequency dependence can arise in systems of mimicry:

Apparatus and method for efficient TDMA bandwidth allocation for TCP/IP satellite-based networks

InactiveUS20050053033A1Balance traffic loadOptimize bandwidth allocationFrequency-division multiplex detailsAntenna supports/mountingsCommunications systemAloha
A communication system balances message traffic between return channel groups and within the groups, so that the user does not control the specific transmission frequency used. Uplink frequencies and bandwidths for the return channels are set by the system in a return channel control message in the broadcast signal so as to account for system and return channel group loading, and to account for user message backlogs. An initial transmission from a remote user may be made using an ALOHA-type burst signal that provides a message backlog to the control station, and is made on a frequency determined from a randomly weighted, load-based frequency selection process. The system, and not the individual users determine the frequency and channel allocations. For large backlogs or priority users, periodic bandwidth is provided. A method for balancing loads among and between groups of return channels in the communication system includes requesting return channel bandwidth in an uplink message from a remote user to a control station. The uplink message may include a both a backlog indicator and a bandwidth allocation request provided to a Network Operations Center (NOC) which can be used to set the return channel bandwidth and frequency for the remote uplink. A user message is transmitted on the designated return channel frequency using bandwidth allocated in accordance with the backlog indicator and a bandwidth allocation request so that traffic loads are maintained in balance between established return channel frequency groups, and within each return channel frequency group.
Owner:HUGHES NETWORK SYST

Orthogonal frequency division multiplexing transmit diversity system for frequency-selective fading channels

Wireless communications for frequency-selective fading channels is realized by employing a system including orthogonal frequency division multiplexing (OFDM) in combination with an at least two antenna transmit diversity arrangement. Specifically, OFDM converts a multipath channel into a plurality of narrowband subchannels each having flat fading. Then, the signals on the same frequency subchannels of the at least two antennas are grouped together. Considering a first frequency subchannel, during a first OFDM time interval, a first signal and a second signal are transmitted on the first frequency subchannel from a first antenna (0) and from a second antenna (1), respectively. During a second OFDM time interval, a reverse sign (−) complex conjugate of the second signal and a complex conjugate of the first signal are transmitted from the first antenna and the second antenna, respectively. In a specific embodiment of the invention, reduced complexity in the implementation is realized by a reverse order complex conjugate and a reverse order, reverse sign (−) complex conjugate and judicious selection of the processed data signals in order to transmit the appropriate ones of the signals during the first and second OFDM intervals. Again, if the channel remains constant over the two OFDM intervals, diversity combination is realized for each frequency subchannel. In another embodiment of the invention, antenna-group hopping is employed in conjunction with pairing in time of the OFDM frequency subchannel signals to realize increased transmit diversity without rate loss.
Owner:LUCENT TECH INC

Remotely Reconfigurable Distributed Antenna System and Methods

The present disclosure is a novel utility of a software defined radio (SDR) based Distributed Antenna System (DAS) that is field reconfigurable and support multi-modulation schemes (modulation-independent), multi-carriers, multi-frequency bands and multi-channels. The present disclosure enables a high degree of flexibility to manage, control, enhance, facilitate the usage and performance of a distributed wireless network such as flexible simulcast, automatic traffic load-balancing, network and radio resource optimization, network calibration, autonomous / assisted commissioning, carrier pooling, automatic frequency selection, frequency carrier placement, traffic monitoring, traffic tagging, pilot beacon, etc. As a result, the SDR DAS can increase the efficiency and traffic capacity of the operators' wireless network.
Owner:DALI WIRELESS

Apparatus and method for efficient TDMA bandwidth allocation for TCP/IP satellite-based networks

InactiveUS20050030932A1Optimized bandwidth allocation schemeBalance traffic loadError preventionFrequency-division multiplex detailsCommunications systemAloha
A communication system balances message traffic between return channel groups and within the groups, so that the user does not control the specific transmission frequency used. Uplink frequencies and bandwidths for the return channels are set by the system in a return channel control message in the broadcast signal so as to account for system and return channel group loading, and to account for user message backlogs. An initial transmission from a remote user may be made using an ALOHA-type burst signal that provides a message backlog to the control station, and is made on a frequency determined from a randomly weighted, load-based frequency selection process. The system, and not the individual users determine the frequency and channel allocations. For large backlogs or priority users, periodic bandwidth is provided. A method for balancing loads among and between groups of return channels in the communication system includes requesting return channel bandwidth in an uplink message from a remote user to a control station. The uplink message may include a both a backlog indicator and a bandwidth allocation request provided to a Network Operations Center (NOC) which can be used to set the return channel bandwidth and frequency for the remote uplink. A user message is transmitted on the designated return channel frequency using bandwidth allocated in accordance with the backlog indicator and a bandwidth allocation request so that traffic loads are maintained in balance between established return channel frequency groups, and within each return channel frequency group.
Owner:HUGHES NETWORK SYST

Integrated frequency translation and selectivity with a variety of filter embodiments

Methods and apparatuses for frequency selectivity and frequency translation, and applications for such methods and apparatuses, are described herein. The method includes steps of filtering an input signal, and down-converting the filtered input signal. The filtering and the down-conversion operations are performed in an integrated, unified manner. The apparatus described herein can be implemented as an integrated circuit (IC).
Owner:PARKER VISION INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products