Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3976 results about "Metal nanoparticles" patented technology

Method for preparing nanocomposite by using two-dimensional transition metal chalcogenide nanosheets and metal

The invention relates to a method for preparing a nanocomposite by using two-dimensional transition metal chalcogenide nanosheets and metal, and belongs to the field of nanomaterial synthesis. The method mainly includes adding a reducing agent and a stabilizing agent into monolayer or multi-layer two-dimensional transition metal chalcogenide nanosheet aqueous dispersion obtained after chemical intercalation, then injecting a certain amount of metal salt solution, and preparing the metal nanocomposite based on monolayer or few-layer two-dimensional transition metal chalcogenide nanosheets on the conditions of ice bath, hydrothermal method, microwaves, ultrasound and the like. In the composite, metal nanoparticles can be evenly distributed on the surfaces of the nanosheets, and the obtained composite can be evenly dispersed in water, and can be used in the solution phase and further processed. Through compositing of the metal nanoparticles, photoelectric property of two-dimensional transition metal chalcogenide can be improved, and the nanocomposite has good application prospects in the fields of supercapacitors, fuel cells and biosensors based on surface enhanced Raman detection, and the like.
Owner:NANJING UNIV OF POSTS & TELECOMM

Synthesis metal nanoparticle

A method for providing an anhydrous route for the synthesis of amine capped coinage-metal (copper, silver, and gold) nanoparticles (NPs) using the coinage-metal mesityl (mesityl=C6H2(CH3)3-2,4,6) derivatives. In this method, a solution of (Cu(C6H2(CH3)3)5, (Ag(C6H2(CH3)3)4, or (Au(C6H2(CH3)3)5 is dissolved in a coordinating solvent, such as a primary, secondary, or tertiary amine; primary, secondary, or tertiary phosphine, or alkyl thiol, to produce a mesityl precursor solution. This solution is subsequently injected into an organic solvent that is heated to a temperature greater than approximately 100° C. After washing with an organic solvent, such as an alcohol (including methanol, ethanol, propanol, and higher molecular-weight alcohols), oxide free coinage NP are prepared that could be extracted with a solvent, such as an aromatic solvent (including, for example, toluene, benzene, and pyridine) or an alkane (including, for example, pentane, hexane, and heptane). Characterization by UV-Vis spectroscopy and transmission electron microscopy showed that the NPs were approximately 9.2±2.3 nm in size for Cu°, (no surface oxide present), approximately 8.5±1.1 nm Ag° spheres, and approximately 8–80 nm for Au°.
Owner:NAT TECH & ENG SOLUTIONS OF SANDIA LLC

Microporous-mesoporous molecular sieve containing noble metal, preparation method and application to catalytic reduction of p-nitrophenol

The invention belongs to the technical field of molecular sieve preparation, and particularly relates to an in-situ preparation method for a microporous-mesoporous molecular sieve containing noble metal. The in-situ preparation method comprises the steps as follows: adding a coupling pore-forming agent, a silicon source, an aluminum source or a titanium source, and an alkali source into a water solution of noble metal nano particles in sequence under the water bath condition; and ageing, drying, crystallizing, drying and carrying out high-temperature calcination to obtain the microporous-mesoporous molecular sieve containing the noble metal. The prepared microporous-mesoporous molecular sieve is provided with a hierarchical pore structure; the noble metal nano particles with high dispersity are covered in situ while a mesoporous structure is generated; and a synthetic method is convenient and simple, saves energy and reduces emission. A multifunctional catalyst prepared with the method integrates the advantages of the microporous channels of the molecular sieve, the transgranular meso pores and the intergranular meso pores of the molecular sieve and the noble metal nano particles, and is more suitable for catalytic reactions of sulfur-containing large molecules such as hydrogen desulfurization and the like.
Owner:JILIN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products