The present invention teaches a novel approach of creating biocmpatible surfaces, said surfaces being capable of functionally interact with biological material. SAid biocompatible surfaces comrise at least two comonents, such as a hydrophobic substratum and a
macromolecule of hydrophilic nature, which, in a
cooperativity, form together the novel biocoompatible surfaces. The novel approach is ased on contacting said hydrophobic substratum with a laterally patterned monomolecular layer of said hydrophilic and flexible macromolecules, exhibiting a pronounced excluded volume. The htus formed two component surface is, in respect to polarity and morphology, a molecularly heterogeneous surface. Structural features of said macromolecular
monolayer (as e.g. the
layer thickness or its lateral density) are determined by: i) the structural features of the layer forming macromolecules (as e.g. their MW or their molecular architecture) and ii) the method of creating said monomolecular layer (as e.g. by physi- or chemisorbing, or by chemically binding said macromolecules). The structural features of the layer forming macromolecules(s) is in turn determined by synthesis. AMount and conformation and thus also
biological activity of biological material (as e.g. polypeptides) which contact the novel biocompatible surface, is determined and maintained by the cooperative action of the underlying hydrophobic substratum and the macromolecular layer. In this way it becomes possible to maintain and control biological interactions between said contacted polypeptides and other biological compounds as e.g. cells, antibodies and the like. Consequently, the present invention aims to reduce and / or eliminate the deactivation and / or denaturation associated with the contacting of polypeptides and / or other biological material to a hydrophobic substratum surface.