Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

111 results about "Borazine" patented technology

Borazine is a polar inorganic compound with the chemical formula B₃H₆N₃. In this cyclic compound, the three BH units and three NH units alternate. The compound is isoelectronic and isostructural with benzene. For this reason borazine is sometimes referred to as “inorganic benzene”. Like benzene, borazine is a colourless liquid.

Preparation method of boron nitride coating on fiber surface

The invention provides a preparation method of a boron nitride coating on a fiber surface, comprising the following steps: (1) ultrasonically cleaning a fiber braid in acetone to remove contaminants on the surface, drying and placing the fiber braid in a deposition furnace; (2) evacuating the deposition furnace, and introducing nitrogen gas; (3) evacuating the deposition furnace to 0.01-1 Pa, and heating to 500-1,800 DEG C; (4) introducing carrier gas and dilute gas in such a manner that the carrier gas can carry borazine into the deposition furnace in a bubbling manner to ensure boron nitride to deposit on the fiber surface so as to form a boron nitride coating; and (5) stopping the introduction of the carrier gas and the dilute gas after the deposition finishes, closing the heating system, and cooling to the room temperature along with the furnace. According to the method, the boron nitride can be well deposited on the surface, inside and crossing points of the fiber braid, and the boron nitride coating with uniform, smooth and dense surface and uniform thickness can be deposited on the surface of each fiber in a fiber bundle.
Owner:NAT UNIV OF DEFENSE TECH

Method for producing hexagonal boron nitride film using borazine oligomer as a precursor

Provided is a method for producing a high-quality boron nitride film grown by using a borazine oligomer as a precursor through a metal catalyst effect. The method solves the problems, such as control of a gaseous precursor and vapor pressure control, occurring in CVD(Chemical vapor deposition) according to the related art, and a high-quality hexagonal boron nitride film is obtained through a simple process at low cost. In addition, the hexagonal boron nitride film may be coated onto various structures and materials. Further, selective coating is allowed so as to carry out coating in a predetermined area and scale-up is also allowed. Therefore, the method may be useful for coating applications of composite materials and various materials.
Owner:KOREA INST OF SCI & TECH

Methods of forming a boron nitride, a method of conditioning a ballistic weapon, and a metal article coated with a monomeric boron-nitrogen compound

A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100° C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boron nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.
Owner:THE UNITED STATES AS REPRESENTED BY THE DEPARTMENT OF ENERGY

Method for preparing boron nitride nanowire by cracking of polymer

The invention provides a method for preparing a boron nitride nanowire by cracking of a polymer. The method comprises the following steps: synthesizing a polyalkylamino borazine precursor according to the prior art: grinding the precursor under the protective condition of inert gas and screening the grinded precursor through a 1000-mesh sieve; placing the precursor powder in a graphite boat, rising the temperature to 100-200 DEG C at the speed of 3-10 DEG C/min in the presence of high-pure nitrogen in a tubular furnace, and then insulating for 1-3 hours; rising the temperature to 500-700 DEG C at the speed of 3-10 DEG/min, and then insulating for 1-3 hours; at the atmosphere of nitrogen, heating to 1000-1600 DEG C at the rising speed of 3-10 DEG C/min, then insulating for 0.5-5 hours, and then cooling along with the furnace so as to obtain the boron nitride nanowire. The diameter of the nanowire prepared by the method is about 13-18 nm and is evenly distributed, no catalyst is used, preparation temperature is low, and energy is saved, thereby reducing the cost; and the method is simple in process, is convenient for operation and is easy to achieve large scale; and as a structure reinforced material, a semiconductor material, a wave-transparent material and the like, the prepared boron nitride nanowire has a good prospect of application.
Owner:NAT UNIV OF DEFENSE TECH

Semiconductor device and method of fabricating the same

There is provided a semiconductor device and method of fabricating the same that employs an insulation film of a borazine-based compound to provided enhanced contact between a material for insulation and that for interconnection, increased mechanical strength, and other improved characteristics. The semiconductor device includes a first insulation layer having a recess with a first conductor layer buried therein, an etching stopper layer formed on the first insulation layer, a second insulation layer formed on the etching stopper layer, a third insulation layer formed on the second insulation layer, and a second conductor layer buried in a recess of the second and third insulation layers. The second and third insulation layers are grown by chemical vapor deposition with a carbon-containing borazine compound used as a source material and the third insulation layer is smaller in carbon content than the second insulation layer.
Owner:RENESAS ELECTRONICS CORP

Method for preparing boron nitride nanorod by using precursor conversion method

The invention relates to a method for preparing a boron nitride nanorod by using a precursor conversion method. The method for preparing the boron nitride nanorod comprises the following steps of: soaking a carbon nanotube in concentrated nitric acid at 60 DEG C for 10-24h, washing and drying; dissolving poly(alkylamino) borazine in an organic solvent, and soaking the dried carbon nanotube in a mixed solution; and filtering at a reduced pressure, then carrying out solid-liquid separation, placing solid in a high temperature finance and preserving the temperature for 0.5-5h at 60-200 DEG C in ammonia gas, then heating to 800-1500 DEG C in a heating speed of 60-450DEG C / min, preserving the temperature for 0.5-5h, and removing carbon element while pyrolyzing to obtain the boron nitride nanorod. The prepared boron nitride nanorod has the diameter of 50nm, has the advantages of simple process, no need of catalyst, high purity, low production cost and high efficiency and is easy to realize large-scale production. The prepared boron nitride nanorod can be applied to materials with the functions of hydrogen storage, catalysis, structure reinforcement and high-temperature resistance and has wide application prospect.
Owner:NAT UNIV OF DEFENSE TECH

Materials for electroluminescent devices

Materials containing one or more borazine rings are employed as materials for electroluminescent devices. The compounds have molecular structures represented by the following formula: in which R1-R6 are independently a metal; a whole or part of an optionally substituted borazine ring; hydrogen; halogen; hydroxyl; optionally substituted alkyl, cycloalkyl, aryl, acyl, alkoxy, acyloxy, amino, acylamino, aralkyl, cyano, carboxyl, thio, vinyl, styryl, aminocarbonyl, carbamoyl, aryloxycarbonyl, phenoxycarbonyl, or alkoxycarbonyl, as well as recognized donor and acceptor groups. The compounds have high thermal stability as well as hole and electron mobilities.
Owner:VERSITECH LTD

Boron nitride material and method of preparation thereof

A method of preparing a boron nitride material, such as boron nitride (BN) or boron carbonitride (BCN), is provided. The method may include providing a substrate, and sublimating an amine borane complex onto the substrate to obtain the boron nitride material. The amine borane complex may include, but is not limited to, borazine, amino borane, trimethylamine borane and triethylamine borane. In addition, the temperature at which the sublimating is carried out may be varied to control composition of the boron nitride material formed. In addition, various morphologies can be obtained by using thepresent method, namely films, nanotubes and porous foam.
Owner:NANYANG TECH UNIV

High-temperature-resistant wave-transparent ceramic-based composite material and preparation method thereof

The invention provides a high-temperature-resistant wave-transparent ceramic-based composite material. A preparation method for preparing the temperature-resistant wave-transparent ceramic-based composite material is further provided; the preparation method for preparing the temperature-resistant wave-transparent ceramic-based composite material comprises the following steps of (1) taking a silicon nitride fiber fabric, and conducting impregnating compound removal treatment on the surfaces of the silicon nitride fiber fabric; and (2) conducting high-pressure immersion treatment and thermal treatment on the silicon nitride fiber fabric treated in the step (1) by means of a borazine precursor to obtain the high-temperature-resistant wave-transparent ceramic-based composite material. Silicon nitride fibers are used as an enhancing phase, boron nitride converted from the borazine precursor is used as a matrix, the high-temperature-resistant wave-transparent ceramic-based composite material and the preparation method thereof are provided, and the high-temperature-resistant wave-transparent ceramic-based composite material has excellent high-temperature stability, high-temperature mechanical property, high-temperature dielectricity and ablation resistance performance.
Owner:北京玻钢院复合材料有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products