Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

96 results about "Nanoelectromechanical systems" patented technology

Nanoelectromechanical systems (NEMS) are a class of devices integrating electrical and mechanical functionality on the nanoscale. NEMS form the next logical miniaturization step from so-called microelectromechanical systems, or MEMS devices. NEMS typically integrate transistor-like nanoelectronics with mechanical actuators, pumps, or motors, and may thereby form physical, biological, and chemical sensors. The name derives from typical device dimensions in the nanometer range, leading to low mass, high mechanical resonance frequencies, potentially large quantum mechanical effects such as zero point motion, and a high surface-to-volume ratio useful for surface-based sensing mechanisms. Applications include accelerometers and sensors to detect chemical substances in the air.

Silicon-graphene waveguide photodetectors, optically active elements and microelectromechanical devices

Systems and methods for modulating light with light in high index contrast waveguides clad with graphene. Graphene exhibits a large nonlinear electro-optic constant χ3. Waveguides fabricated on SOI wafers and clad with graphene are described. Systems and methods for modulating light with light are discussed. Optical logic gates are described. Waveguides having closed loop structures such as rings and ovals, Mach-Zehnder interferometer, grating, and Fabry-Perot configurations, are described. Optical signal processing methods, including optical modulation at Terahertz frequencies, are disclosed. Optical detectors are described. Microelectromechanical and nanoelectromechanical systems using graphene on silicon substrates are described.
Owner:UNIV OF WASHINGTON CENT FOR COMMERICIALIZATION

Energy conversion systems utilizing parallel array of automatic switches and generators

Nanoelectromechanical systems utilizing nanometer-scale assemblies are provided that convert thermal energy into another form of energy that can be used to perform useful work at a macroscopic level. These systems may be used to, for example, produce useful quantities of electric or mechanical energy, heat or cool an external substance or propel an object in a controllable direction. In particular, the present invention includes nanometer-scale beams that reduce the velocity of working substance molecules that collide with this nanometer-scale beam by converting some of the kinetic energy of a colliding molecule into kinetic energy of the nanometer-scale beam. In embodiments that operate without a working substance, the thermal vibrations of the beam itself create the necessary beam motion. In some embodiments, an automatic switch is added to realize a regulator such that the nanometer-scale beams only deliver voltages that exceed a particular amount. Various devices including, piezoelectric, electromagnetic and electromotive force generators, are used to convert the kinetic energy of the nanometer-scale beam into electromagnetic, electric or thermal energy. Systems in which the output energy of millions of these devices is efficiently summed together are also disclosed as well as systems that include nanometer-scale transistors.
Owner:CJP IP HLDG

Energy conversion systems utilizing parallel array of automatic switches and generators

Nanoelectromechanical systems utilizing nanometer-scale assemblies are provided that convert thermal energy into another form of energy that can be used to perform useful work at a macroscopic level. These systems may be used to, for example, produce useful quantities of electric or mechanical energy, heat or cool an external substance or propel an object in a controllable direction. In particular, the present invention includes nanometer-scale beams that reduce the velocity of working substance molecules that collide with this nanometer-scale beam by converting some of the kinetic energy of a colliding molecule into kinetic energy of the nanometer-scale beam. In embodiments that operate without a working substance, the thermal vibrations of the beam itself create the necessary beam motion. In some embodiments, an automatic switch is added to realize a regulator such that the nanometer-scale beams only deliver voltages that exceed a particular amount. Various devices including, piezoelectric, electromagnetic and electromotive force generators, are used to convert the kinetic energy of the nanometer-scale beam into electromagnetic, electric or thermal energy. Systems in which the output energy of millions of these devices is efficiently summed together are also disclosed as well as systems that include nanometer-scale transistors.
Owner:CJP IP HLDG

Piezoelectric actuation micro-tensile testing device

The invention relates to a piezoelectric actuation micro-tensile testing device and belongs to the field of test of mechanical properties of materials under micro nano dimension in a micro nano electromechanical system. The device comprises a piezoelectric actuation unit, a micro tension sensor, a micro displacement detection unit, a position adjustment unit, an optical microscopic imaging unit and a base. Compared with the prior art, the device has the advantages that the axial deformation and the axial tension of a sample can be simultaneously and directly measured, and the elasticity modulus, the yield strength, the breaking strength and other mechanical property parameters of the sample under the micro dimension can be measured. According to the piezoelectric actuation micro-tensile testing device, the piezoelectric actuation unit, the micro tension sensor, the micro displacement detection unit, the position adjustment unit and the optical microscopic imaging unit are designed by adopting the modularization thought, wherein the commercialized and high-precision micro tension sensor and a high-precision capacitance type displacement sensor are adopted to ensure the measurement accuracy of the axial tension and axial deformation of the sample; the device is simple in structure, low in cost, high in precision and good in smooth upgrading performance.
Owner:ZHENGZHOU UNIVERSITY OF LIGHT INDUSTRY

Method for preparing metal pattern on curved surface by combining nano-imprinting with wet etching

The invention discloses a method for preparing a metal pattern on a curved surface by combining nano-imprinting with wet etching. The method comprises the following steps: firstly, evaporating one layer of metal on the curved surface; then imprinting a pattern on the metal by a transferring method; etching to remove a residual layer by a reaction ion etching method; etching the metal to a base by taking imprinting glue as a mask; and then removing the imprinting glue on the upper layer of the metal pattern by using the reaction ion etching to obtain the metal pattern. The method disclosed by the invention is simple and feasible; an ion lifting process is replaced on a plane to prepare the metal pattern; compared with a common ion lifting process, the integrity of the pattern is not easy to damage and the defects are reduced; the metal pattern is prepared on the curved surface and the process of preparing the pattern on the curved surface cannot be realized by the ion lifting process. The method has a wide application prospect in the fields of production of a fiber Bragg grating, a refraction / diffraction mixed optical element, a nano electromechanical system and the like.
Owner:WUXI IMPRINT NANO TECH

Multi-physical-field nanometer generator

InactiveCN103391025AIncrease output powerImprove the stability and continuity of power supplyThermoelectric device with peltier/seeback effectNanoinformaticsMicro nanoNanogenerator
The invention relates to a multi-physical-field nanometer generator which is constructed by utilizing electricity generating characteristics of a carbon nanometer tube thin film in physical fields such as a light physical field, a heat physical field and a fluid physical field. The multi-physical-field nanometer generator structurally comprises an outer electrode, an inner electrode, the carbon nanometer tube thin film and a silicon substrate composite substrate and is characterized in that when the carbon nanometer tube thin film is subjected to the combined action of light and airflow, solar energy and fluid mechanical energy are converted into electric energy with the photothermal effect, the Bernoulli effect and the Seebeck effect. The multi-physical-field nanometer generator comprises p type or n type electricity generating units which are connected in series or in parallel to form a matrix power supply device which is provided with a plurality of energy output nodes, the number of the electricity generating units can be flexibly set according to different load requirements, and the output power of the generator is improved. The multi-physical-field nanometer generator has the advantages of being tiny in size, high in reliability, flexible, practical, free of moving parts and the like, and capable of being applied to skins of vehicles such as automobiles, trains, planes. Electricity can be provided for internal micro-nano mechanical and electrical systems or devices by utilizing light and air flow.
Owner:PEOPLES LIBERATION ARMY ORDNANCE ENG COLLEGE

Fabrication cubic boron nitride cone-microstructures and their arrays

A conical structure of cubic Boron Nitride (cBN) is formed on a diamond layered substrate. A method of forming the cBN structure includes steps of (a) forming diamond nuclei on a substrate, (b) growing a layer of diamond film on the substrate, (c) depositing a cBN film on said diamond layer, (d) pre-depositing nanoscale etching masks on the the cBN film, and (e) etching the the deposited cBN film. In particular, though not exclusively, the cubic Boron Nitride structure has great potential applications in probe analytical and testing techniques including scanning probe microscopy (SPM) and nanoindentation, nanomechanics and nanomachining in progressing microelectromechanical system (MEMS) and nanoelectyromechanical system (NEMS) devices, field electron emission, vacuum microelectronic devices, sensors and different electrode systems including those used in electrochemistry.
Owner:CITY UNIVERSITY OF HONG KONG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products