Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1370results about "Titanium compounds" patented technology

Sodium zirconium carbonate and zirconium basic carbonate and methods of making the same

A method of making sodium zirconium carbonate is described which involves forming a mixture of zirconium oxychloride with soda ash and then heating at a sufficient temperature and for a sufficient time to form the sodium zirconium carbonate. Subsequent washing and filtration steps can further form parts of this process. A novel sodium zirconium carbonate is further described which contains from about 2 wt % to about 5 wt % Na<+>; from about 44 wt % to about 50 wt % ZrO2; from about 12 wt % to about 18 wt % CO3<2->; and from about 32 wt % to about 35 wt % H2O.
Owner:RENAL SOLUTIONS

Preparation of complex fluoride and complex fluoride phosphor

ActiveUS20120256125A1Uniform sizeSatisfactory emissive propertyTin compoundsSilicon halogen compoundsPhysical chemistryFluoride
A complex fluoride A2MF6 wherein M is a tetravalent element Si, Ti, Zr, Hf, Ge or Sn, A is an alkali metal Li, Na, K, Rb or Cs is prepared by providing a first solution containing a fluoride of M, providing a second solution containing a compound of A and / or the compound of A in solid form, mixing the first solution with the second solution and / or the solid for reacting the fluoride of M with the compound of A, and recovering the resulting solid product via solid-liquid separation.
Owner:SHIN ETSU CHEM IND CO LTD

Nano-sized particles, processes of making, compositions and uses thereof

The present invention describes methods for preparing high quality nanoparticles, i.e., metal oxide based nanoparticles of uniform size and monodispersity. The nanoparticles advantageously comprise organic alkyl chain capping groups and are stable in air and in nonpolar solvents. The methods of the invention provide a simple and reproducible procedure for forming transition metal oxide nanocrystals, with yields over 80%. The highly crystalline and monodisperse nanocrystals are obtained directly without further size selection; particle size can be easily and fractionally increased by the methods. The resulting nanoparticles can exhibit magnetic and / or optical properties. These properties result from the methods used to prepare them. Also advantageously, the nanoparticles of this invention are well suited for use in a variety of industrial applications, including cosmetic and pharmaceutical formulations and compositions.
Owner:THE TRUSTEES OF COLUMBIA UNIV IN THE CITY OF NEW YORK

Positive active material for rechargeable lithium battery and method of preparing same

Disclosed is a positive active material for a rechargeable lithium battery. The positive active material includes at least one compound represented by formulas 1 to 4 andl a metal oxide or composite metal oxide layer formed on the compound. <table-cwu id="TABLE-US-00001"> <number>1< / number> <tgroup align="left" colsep="0" rowsep="0" cols="3"> <colspec colname="OFFSET" colwidth="42PT" align="left" / > <colspec colname="1" colwidth="77PT" align="left" / > <colspec colname="2" colwidth="98PT" align="center" / > <row> <entry>< / entry> <entry>< / entry> < / row> <row> <entry>< / entry> <entry namest="OFFSET" nameend="2" align="center" rowsep="1">< / entry> < / row> <row> <entry>< / entry> <entry>LixNi1-yMnyF2< / entry> <entry>(1)< / entry> < / row> <row> <entry>< / entry> <entry>LixNi1-yMnyS2< / entry> <entry>(2)< / entry> < / row> <row> <entry>< / entry> <entry>LixNi1-y-zMnyMzO2-aFa< / entry> <entry>(3)< / entry> < / row> <row> <entry>< / entry> <entry>LixNi1-y-zMnyMzO2-aSa< / entry> <entry>(4)< / entry> < / row> <row> <entry>< / entry> <entry namest="OFFSET" nameend="2" align="center" rowsep="1">< / entry> < / row> < / tgroup> < / table-cwu> (where M is selected from the group consisting of Co, Mg, Fe, Sr, Ti, B, Si, Ga, Al, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ac, Th, Pa, U, Np, IPu, Am, Cm, Bk, Cf, Es, Fm, Md, No and Lr, 0.95<=x<=1.1, 0<=y<=0.99, 0<=,z<=0.5, and 0<=a<=0.5)
Owner:SAMSUNG SDI CO LTD

Process of making a water dispersible titanium dioxide pigment useful in paper laminates

The present invention relates to a process for making a titanium dioxide pigment having consisting of titanium dioxide and single layer of inorganic surface treatment consisting of aluminum phosphate wherein the pigment is characterized by and isoelectric point which is greater than pH 6 and a negative zeta potential of at a pH of 7.5 or more.
Owner:EI DU PONT DE NEMOURS & CO

Metal heterocyclic compounds for deposition of thin films

Methods and compositions for depositing a metal containing film on a substrate are disclosed. A reactor and at least one substrate disposed in the reactor are provided. A metal containing precursor is provided and introduced into the reactor, which is maintained at a temperature of at least 100° C. A metal is deposited on to the substrate through a deposition process to form a thin film on the substrate.
Owner:LAIR LIQUIDE SA POUR LETUDE & LEXPLOITATION DES PROCEDES GEORGES CLAUDE

Method of preparing ceramic powders using chelate precursors

Wet-chemical methods involving the use of water-soluble hydrolytically stable metal-ion chelate precursors and the use of a nonmetal-ion-containing strong base can be used in a coprecipitation procedure for the preparation of ceramic powders. Examples of the precipitants used include tetraalkylammonium hydroxides. A composition-modified barium titanate is one of the ceramic powders that can be produced. Certain metal-ion chelates can be prepared from 2-hydroxypropanoic acid and ammonium hydroxide.
Owner:EESTOR

Nano-size layered double hydroxide and step-by-step precipitation preparation method thereof

The invention provides a nano-size layered double hydroxide and a step-by-step precipitation preparation method thereof. The preparation method comprises the following steps: based on a soluble salt of a metal and an alkali as raw materials, respectively precipitating metal ions constituting an LDH (layered double hydroxide) layer plate through step-by-step precipitation reaction and generating the LDH during the second-step precipitation process. As the activity of the hydroxide prepared by the first-step precipitation reaction is high, the LDH can fast nucleate and grow during the second-step precipitation, an obtained LDH sheet is thinner, the thickness of the layer plate is 5-15nm, the length of the layer plate is 50-150nm, and the specific surface area of a BET (Brunauer-Emmett-Teller) is 140-280m<2> / g, which is much larger than the specific surface area of the common LDH. By adopting the method, the shortcoming of small specific surface area during the preparation of the LDH through a co-precipitation method can be overcome. The preparation method adopted by the invention is simple and convenient, high temperature and high pressure are not required, special equipment is not required, sources of the raw materials are rich, and the cost is low. The layered double hydroxide can be widely applied to the fields of adsorption separation, catalysis, high polymer materials and the like.
Owner:BEIJING UNIV OF CHEM TECH

Thermoelectric material and thermoelectric converting element using the same

Compounds are expressed by general formula of AxBC2-y where 0<=x<=2 and 0<=y<1, and have CdI2 analogous layer structures; A-site is occupied by at least one element selected from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Ir, Pt, Au, Sc, rare earth elements containing Y, B, Al, Ga, In, Tl, Sn, Pb and Bi; B-site is occupied by at least one element selected from the group consisting of Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W, Ir, and Sn; C-site is occupied by at least one element selected from the group consisting of S, Se and Te; the compounds exhibit large figure of merit so as to be preferable for thermoelectric generator / refrigerator.
Owner:NEC CORP

Method for processing a zirconium oxide composition in crystalline form

Methods of producing zirconium oxide compositions and using same are provided. The zirconium oxide compositions in crystalline form can be prepared by a synthetic process wherein the hydrolysis of zirconyl chloride and particle formation can be achieved simultaneously. Alternatively, the particle formation can occur first and then followed by hydrolysis with a base solution. The processes utilize a zirconyl salt solution that includes a zirconyl salt in isopropanol and water.
Owner:BAXTER INT INC +1

Process for preparing hydrated sodium titanate and nano titanate tube series

A process for preparing the nanometre tubes of hydrated sodium titanate and titanate series includes such steps as hydrothermal reaction of TiO2 or metatitanic acid to obtain the nanometre tubes of hydrated sodium titanate, mixing them with the solution containing one or two kinds of metal ions to convert them to the nanometre tubes of hydrated titanate or composite hydrated titanates of the saidmetal ions, and thermal dewatering to obtain the nanometre tubes of corresponding titanate or composite titanates. Its advantages are uniform shape, large specific surface area, high thermal stability and regulatable catalytic performance.
Owner:TSINGHUA UNIV

Method for producing beneficiated titanium oxides

The invention is a method and apparatus for producing beneficiated titanium oxides using a modified rotary hearth furnace, that is a finisher-hearth-melter (FHM) furnace. In the method the refractory surface of the hearth is coated with carbonaceous hearth conditioners and refractory compounds, where onto said hearth is charged with pre-reduced agglomerates. The pre-reduced agglomerates is leveled, then heated until molten, and then reacted with the carbon and reducing gas burner gases until any residual iron oxide is converted to iron having a low sulfur content. Fluid slag and molted iron forms melted agglomerates. The fluid slag is rich in titanium. The melted agglomerates are cooled, and then the melted agglomerates and the hearth conditioners, including the refractory compounds, are discharged onto a screen, which separate the melted agglomerates from the hearth conditioner. The hearth conditioner is recycled, and the melted agglomerates are prepared for sale or for additional treatment in a final melter, where the final melter is preferably an electric furnace. Exhaust gases from the FHM furnace are recovered for calcining coal into fuel gases and coke.
Owner:MIDREX TECH INC

Zirconium phosphate recharging method and appartus

Methods and related apparatuses for sorbent recharging are provided. The methods and related apparatuses for recharging can recharge a specific rechargeable layer or module of a sorbent material such as zirconium phosphate in a sorbent cartridge. The methods and apparatuses include a fluid source containing at least one recharging fluid, wherein the fluid source is fluidly connectable to at least one rechargeable sorbent module for use in sorbent dialysis in a fluid flow path. The methods and apparatuses include passing a single solution through the zirconium phosphate for ion exchanges, resulting in zirconium phosphate to maintain a substantially consistent pH in a dialysate used during dialysis.
Owner:MOZARC MEDICAL US LLC

Method for recovering vanadium, tungsten and titanium from waste vanadium-tungsten-titanium-based denitration catalyst

The invention relates to a method for recovering non-ferrous metals from waste denitration catalysts, particularly relates to a method for recovering vanadium, tungsten and titanium from a waste vanadium-tungsten-titanium-based denitration catalyst, belonging to the field of non-ferrous metal recovery technologies. The method mainly comprises the steps of preparing the catalyst into powder with the grain size being smaller than 100 meshes, and adding concentrated alkali liquor; heating to react vanadium, tungsten and titanium with alkali, so as to produce slightly-soluble titanate, water-soluble vanadate and tungstate; filtrating to obtain a titanate filter cake, wherein titanate or titanic acid can be prepared from the filter cake; adding ammonium salt into a filtrate so as to precipitate ammonium metavanadate, and filtrating to obtain ammonium metavanadate and a new filtrate; adding concentrated acid into the new filtrate, thereby preparing solid tungstic acid. The method has the advantages of simple process, low energy consumption, good solid-liquid reaction contact, high vanadium, tungsten and titanium recovery rate, and the like.
Owner:BEIJING UNIV OF CHEM TECH

Layer cathode methods of manufacturing and materials for Li-ion rechargeable batteries

A positive electrode active material for lithium-ion rechargeable batteries of general formula Li1+xNiαMnβAγO2 and further wherein A is Mg, Zn, Al, Co, Ga, B, Zr, or Ti and 0<x<0.2, 0.1≦α≦0.5, 0.4≦β≦0.6, 0≦γ≦0.1 and a method of manufacturing the same. Such an active material is manufactured by employing either a solid state reaction method or an aqueous solution method or a sol-gel method which is followed by a rapid quenching from high temperatures into liquid nitrogen or liquid helium.
Owner:CHICAGO UNIV OF THE +1

Method of forming inorganic pigments

The present invention provides a method of forming inorganic pigments using one or more metal alloys. Metal alloys used in the method of the invention are preferably milled to a mean particle size of less than about 10 microns, may be mixed with other metal oxides, and calcined in the presence of oxygen in a rotary kiln. Inorganic pigments formed in accordance with the method of the invention can be used in a wide variety of applications, including the coloration of glass matrixes, ceramic bodies, polymers, and paints.
Owner:FERRO CORP

Preparation method of spinel lithium titanate nano tube/wire for lithium battery and capacitor

This invention discloses a preparation method for spinel lithium titanate nm pipes / nm lines used in Li batteries and capacitors, which applies cheap industrial TiO2 as the raw material and supersonic chemical method to prepare said nm pipes / lines then takes them as the raw materials to be mixed with a certain quantity of soluble Li salt solution to be baked in air and by low-temperature hydrothermal ion exchange method to manufacture spinel lithium titanate nm pipes / lines with uniform shape, uniform diameter and even larger major diameter ratio and big ratio surface area.
Owner:TSINGHUA UNIV

Rubidlum-82 generator based on sodium nonatitanate support, and improved separation methods for the recovery of strontium-82 from irradiated targets

Sodium nonatitanate compositions, a method using the composition for recovery of 82Sr from irradiated targets, and a method using the composition for generating 82Rb. The sodium nonatitanate materials of the invention are highly selective at separating strontium from solutions derived from the dissolution of irradiated target materials, thus reducing target processing times. The compositions also have a very low affinity for rubidium, making it an ideal material for use as a 82Rb generator. Sodium nonatitanate materials of this type both improve the recovery of 82Sr and provide a safer, more effective 82Rb generator system.
Owner:LYNNTECH

Preparation of complex fluoride and complex fluoride phosphor

ActiveCN102732249AHigh yieldSatisfied with launch performanceTin compoundsFluoride preparationPhosphorFluoride
A complex fluoride A 2 MF 6 wherein M is a tetravalent element Si, Ti, Zr, Hf, Ge or Sn, A is an alkali metal Li, Na, K, Rb or Cs is prepared by providing a first solution containing a fluoride of M, providing a second solution containing a compound of A and / or the compound of A in solid form, mixing the first solution with the second solution and / or the solid for reacting the fluoride of M with the compound of A, and recovering the resulting solid product via solid-liquid separation.
Owner:SHIN ETSU CHEM CO LTD

Titanium dioxide

A coloured composition comprising: a) NIR scattering TiO2 particulate material with an average crystal size of greater than 0.40 μm and a particle size distribution such that 30% or more of the particles are less than 1 μm; b) one or more non-white colorant; wherein the particulate material and the non-white colorant are dispersed within a vehicle. This material with a large crystal size has unusually high reflection of NIR radiation and, simultaneously, noticeably diminished reflectance of visible light. Also disclosed is a coated particulate TiO2 material, wherein the material has an average crystal size of greater than 0.40 μm, and the coating comprises one or more oxide material; this provides low levels of photocatalytic activity that were previously unattainable. This coated TiO2 material may be provided in a composition.
Owner:TIOXIDE EURO

Layered electrodes for lithium cells and batteries

ActiveUS7358009B2Minimize electrochemical capacity lossMinimize electrochemicalOxygen/ozone/oxide/hydroxideSecondary cellsLithium metalElectrochemical cell
Lithium metal oxide compounds of nominal formula Li2MO2, in which M represents two or more positively charged metal ions, selected predominantly and preferably from the first row of transition metals are disclosed herein. The Li2MO2 compounds have a layered-type structure, which can be used as positive electrodes for lithium electrochemical cells, or as a precursor for the in-situ electrochemical fabrication of LiMO2 electrodes. The Li2MO2 compounds of the invention may have additional functions in lithium cells, for example, as end-of-discharge indicators, or as negative electrodes for lithium cells.
Owner:UCHICAGO ARGONNE LLC

Synthesis of Metal Compounds Under Carbothermal Conditions

InactiveUS20050255026A1Economical and convenient processLower capability requirementsPhosphatesLithium compoundsOxidation stateGraphite
Active materials of the invention contain at least one alkali metal and at least one other metal capable of being oxidized to a higher oxidation state. Preferred other metals are accordingly selected from the group consisting of transition metals (defined as Groups 4-11 of the periodic table), as well as certain other non-transition metals such as tin, bismuth, and lead. The active materials may be synthesized in single step reactions or in multi-step reactions. In at least one of the steps of the synthesis reaction, reducing carbon is used as a starting material. In one aspect, the reducing carbon is provided by elemental carbon, preferably in particulate form such as graphites, amorphous carbon, carbon blacks and the like. In another aspect, reducing carbon may also be provided by an organic precursor material, or by a mixture of elemental carbon and organic precursor material.
Owner:LITHIUM WERKS TECH BV +1

Method for producing aluminum titanate sintered object

The present invention provides a process for preparing an aluminum-titanate-based sintered body comprising the step of firing, at 1250 to 1700° C., a formed product prepared from a raw material mixture containing 100 parts by weight of a mixture of TiO2 and Al2O3 in a weight ratio of TiO2:Al2O3=40:60 to 60:40, and 1 to 15 parts by weight of an alkali feldspar represented by the formula:(NaxK1-x)AlSi3O8 wherein 0<=x<=1. According to the process of the present invention, it is possible to obtain an aluminum-titanate-based sintered body in which inherent properties of an aluminum titanate, i.e., a low coefficient of thermal expansion and high corrosion resistance are maintained, the mechanical strength thereof is improved, and which can be stably used even under high temperature conditions.
Owner:OHCERA CO LTD

Manufacturing method for titanium hydride powders

It is an object of the present invention to provide a method of manufacturing titanium hydride powder that is capable of manufacturing titanium hydride by using titanium scrap generated during machining as a raw material. Further, according to the method of manufacturing titanium hydride powder, since the titanium scrap is hydrogenated and changed into powder at the same time for a short time, it is possible to reduce the number of processes and manufacturing cost and to improve productivity. In order to achieve the object, according to an embodiment of the present invention, a method of manufacturing titanium hydride powder includes charging titanium scrap into a reaction container, removing air in the reaction container and supplying hydrogen gas to the reaction container, and performing ball milling.
Owner:KOREA INST OF IND TECH

Non-aqueous electrolyte secondary battery

A non-aqueous electrolyte secondary battery includes a positive electrode, a negative electrode, and a non-aqueous electrolyte, and the negative electrode contains a conductive agent and a negative electrode active material including a lithium titanium oxide. The conductive agent in the negative electrode includes graphitized vapor grown carbon fiber having a lattice constant C0 along a stacking direction of from 6.7 Å to 6.8 Å, as determined by X-ray diffraction.
Owner:SANYO ELECTRIC CO LTD

Metal peroxide films

Disclosed are adhesive coating compositions containing a metal peroxide for producing clear colorless adhesive coatings on substrates, particularly micro particulate substrates. In one preferred embodiment the nanoparticle coatings are chemically active and function at a high level of efficiency due to the high total surface area of the micro particulate substrate. Also disclosed are coated substrates and compositions having nanoparticles bound to a substrate by the coating compositions.
Owner:PURETI

Process for producing nano-powders and powders of nano-particle loose aggregate

The present invention discloses a process for producing nano-powders and powders of nano-particle loose aggregate, which includes: (a) providing at least two reactant solutions A and B capable of rapidly reacting to form deposits; (b) supplying the at least two reactant solutions A and B at least at the reaction temperature into a mixing and reaction precipitator respectively, in which mixing reaction and precipitation are continuously carried out in sequence, the mixing and reaction precipitator being selected from at least one of a tubular ejection mixing reactor, a tubular static mixing reactor and an atomization mixing reactor; and (c) treating the deposit-containing slurry continuously discharged from the mixing reaction precipitator.
Owner:UNIV OF SCI & TECH LIAONING
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products