Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

74results about "Thick magnetic films" patented technology

Electromagnetic Interference Suppressor, Antenna Device and Electronic Information Transmitting Apparatus

InactiveUS20070252771A1High densitySuperior electromagnetic interference suppressing effectMagnetic/electric field screeningLayered productsElastomerVitrification
An electromagnetic interference suppressor of substantially unpressurized sheet form is obtained by applying and drying a magnetic paint, and comprises 30 to 80% by volume of soft magnetic powder and 20 to 70% by volume of a binder. The binder is an elastomer or a resin that a glass transition point and / or a softening point is 50° C. or more and a storage modulus (E′) is 107 Pa (JIS K 7244-1) or more in a state containing neither solvent nor filler at room temperature. This electromagnetic interference suppressor exerts a superior electromagnetic interference suppressing effect.
Owner:NITTA CORP

Materials system for low cost, non wire-wound, miniature, multilayer magnetic circuit components

This invention describes materials system and processing conditions for manufacturing magnetic circuit components such as induction coils and transformers that are non wire-wound, miniature in size and, have a low manufacturing cost. The materials system of this invention is comprised of: (1) Low Temperature Cofire Ceramic (LTCC) tapes or thick film pastes of ferromagnetic ceramics with a 20 to 750 range of magnetic permeability to form the magnetic core of the components, (2) Thick film buried silver conductor paste to form the planar induction coils on individual magnetic layers, (3) Thick film via-fill silver conductor paste to interconnect two or more of the planar induction coils through the thickness of the magnetic layers, (4) Thick film silver solderable top layer conductor paste compatible with the ferrite and, (5) Thick film dielectric paste with low magnetic permeability to redirect the magnetic flux for enhancing the magnetic coupling coefficient and to insulate the silver conductors for enhancing the dielectric breakdown voltage. The key characteristics of the materials system of this invention that facilitate manufacture of low cost non wire-wound, miniature magnetic circuit components are: (1) Mutual compatibility essential for either of the techniques, the cofire technique or the sequential technique, used for manufacturing multilayer hybrid microelectronic components, (2) Complementary thermo-physical properties such as shrinkage and thermal expansion coefficient essential for manufacturing flat multilayer magnetic components, (3) Magnetic components with magnetic coupling coefficients greater than 0.95 under optimal processing conditions and, (4) Magnetic components with dielectric breakdown voltage greater than 500V/mil under optimal processing conditions.
Owner:FERRO CORP

UV/EB cured integrated magnets-composition and method of fabrication

The present invention comprises a radiation curable composition for in-line printing containing magnetic pigments capable of being magnetized to possess permanent magnetic properties after the composition is cured. The composition is cured by an ionizing radiation source, preferably by UV light or electron beam radiation (UV/EB). The present invention is also directed to an in-line process for printing magnetic images on non-magnetic substrate, comprising: pattern applying the above mentioned radiation curable composition on the substrate opposite to a print side, pre-aligning the magnetic pigment particles (if necessary) of the applied composition, curing the composition by ionizing radiation source (UV/EB), magnetizing the cured composition, then finishing the final piece. The finishing step could involve delivering the final piece in a simple sheet with die cut magnets or creating an "integrated magnet" format involving plow folding over the magnet panel, pattern coating or flood coating an adhesive that will only adhere the non-magnet matrix areas between die cut magnets, thus, allowing for the individual magnets to be "popped" out of the carrier by the final end user. The resulting magnetized pieces will possess holding power like magnets (refrigerator and office magnets) and are capable of carrying personalized, Scitex imaged and direct marketing information (including redemption value for coupons, local public service access numbers, etc.)
Owner:SOVEREIGN SPECIALTY CHEM +1

Acid stable aqueous dispersion of metal particles and applications

Aqueous coating compositions containing acid stable metal dispersions, prepared by chemical reduction in aqueous medium, are obtained by using a N-quaternized cellulose derivative as binder. They can be used for the preparation of heat mode recording layers, magnetic layers and conductive layers.
Owner:AGFA GEVAERT AG

Magnetic thin film, magnetic component that uses this magnetic thin film, manufacturing methods for the same, and a power conversion device

On top of a silicon substrate, a polyimide film with a thickness of 10 μm is formed. On top of this, a magnetic thin film that is a polyimide film containing Fe fine particles and that has a thickness of 20 μm is formed. On top of this magnetic thin film, a patterned Ti / Au film and a Ti / Au connection conductor are formed. On top of this, a polyimide film with a thickness of 10 μm, and a Cu coil with a height 35 μm, width 90 μm, space 25 μm, and a polyimide layer that fills the spaces in the Cu coil are formed. On top of this, via a polyimide film with a thickness of 10 μm, a magnetic thin film that is a polyimide film containing Fe particles and that has a thickness of 20 μm is formed. This thin film inductor has a small alternating current resistance. The present invention provides a magnetic thin film that is well suited for mass production, can be manufactured easily, can be made into a thick film, has soft magnetic qualities, and is inexpensive. The present invention also provides a magnetic component that uses this magnetic thin film, manufacturing methods for these, and a power conversion device.
Owner:FUJI ELECTRIC DEVICE TECH CO

Core-shell particles, magneto-dielectric materials, methods of making, and uses thereof

In an aspect, a magnetic particle, comprises a core comprising iron, and a second metal comprising cobalt, nickel, or a combination thereof; wherein a core atomic ratio of the iron to the second metal is 50:50 to 75:25; and a shell at least partially surrounding the core, and comprising an iron oxide, an iron nitride, or a combination thereof, and the second metal. In another aspect, a magneto-dielectric material comprises a polymer matrix and a plurality of the magnetic particles; wherein the magneto-dielectric material has a magnetic loss tangent of less than or equal to 0.07 at 1 GHz.
Owner:ROGERS CORP

UV/EB cured integrated magnets-composition and method of fabrication

The present invention comprises a radiation curable composition for in-line printing containing magnetic pigments capable of being magnetized to possess permanent magnetic properties after the composition is cured. The composition is cured by an ionizing radiation source, preferably by UV light or electron beam radiation (UV / EB). The present invention is also directed to an in-line process for printing magnetic images on non-magnetic substrate, comprising: pattern applying the above mentioned radiation curable composition on the substrate opposite to a print side, pre-aligning the magnetic pigment particles (if necessary) of the applied composition, curing the composition by ionizing radiation source (UV / EB), magnetizing the cured composition, then finishing the final piece. The finishing step could involve delivering the final piece in a simple sheet with die cut magnets or creating an "integrated magnet" format involving plow folding over the magnet panel, pattern coating or flood coating an adhesive that will only adhere the non-magnet matrix areas between die cut magnets, thus, allowing for the individual magnets to be "popped" out of the carrier by the final end user. The resulting magnetized pieces will possess holding power like magnets (refrigerator and office magnets) and are capable of carrying personalized, Scitex imaged and direct marketing information (including redemption value for coupons, local public service access numbers, etc.)
Owner:SOVEREIGN SPECIALTY CHEM

Method of manufacturing a motor comprising a rare earth thick film magnet

The method of manufacturing rare earth thick film magnet comprising a step of forming an alloy layer of 30-100 μm thick having a general formula RXBYTMZ on a substrate by a physical deposition process, and a step of heat-treating the alloy layer to form a thick film magnetic layer having R2TM14B phase as a main phase. In the general formula, R is at least one of rare earth elements, B is boron, TM is iron or its alloy partly substituted by cobalt. X is 0.1-0.2, Y is 0.05-0.2 and Z=1-X-Y. Further, the method of the present invention includes a step of laminating a plurality of alloy layers formed on a substrate together with the substrate. A motor comprising rare earth thick film magnet of the present invention is extremely small while obtaining high output.
Owner:PANASONIC CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products