Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

713 results about "Scaffold material" patented technology

Scaffolding ladders consists of multiple materials to hold everything together. The three main materials that are used are tubes, boards/planks, and couplers. Other common materials used in a scaffolding ladder include ladders, sheeting, ties, base plates, ropes, gin wheels, etc. Tubes are made out of aluminum or steel.

Biomaterials with enhanced properties and devices made therefrom

Biomaterials with enhanced properties such as improved strength, flexibility, durability and reduced thickness are useful in the fabrication of biomedical devices, particularly those subjected to continuous or non-continuous loads where repeated flexibility and long-term durability are required. These enhanced properties can be attributed to elevated levels of elastin, altered collagen types, and other biochemical changes which contribute to these enhanced properties. Examples of devices which would be improved by use of such tissue include heart valves, including percutaneous heart valves, and vascular grafts, patches and the like. Such enhanced materials can be sourced from specific populations of animals, such as neonatal calves, or in range-fed adult cattle, or can be fabricated or created from cell populations exhibiting such properties. In one embodiment, glutaraldehyde-fixed neonatal pericardial tissue is used to create leaflets in a percutaneous heart valve, and may be used without chemical fixation, with or without processes to remove residual cellular membranes, and utilized as a scaffold material for tissue engineering.
Owner:SOUTHERN LIGHTS VENTURES 2002

Super macroporous polymer microspheres and preparation method thereof

The invention provides super macroporous polymer microspheres and a preparation method thereof. The preparation method comprises the following steps of: firstly, preparing an oil-in-water in-water composite emulsion as a template for super macroporous microspheres through a two-step emulsion process; then, solidifying an oil phase by using a solvent removal method to form super macroporous microspheres provided with inner-outer through pore passages; and finally, after molding the microspheres, further crosslinking microsphere skeleton molecules to obtain microspheres with rigid resin structures. The microspheres prepared by the method have a through pore passage structure, the controllable particle size range is 0.1-300 microns, the controllable pore size range is 0.09-90 microns, and the controllable porosity range is 10-90%. Super macroporous structures are beneficial for biological macromolecules to penetrate through and enter the microspheres, the mass transfer by convection in the microspheres can be realized, and the rigid structure can tolerate higher pressure and higher flow velocity. The super macroporous polymer microspheres can be used as stationary phase fillers for chromatographic separation, immobilized carriers of enzymes, cell culture micro-carriers, tissue engineering micro scaffold materials, adsorbing materials and the like.
Owner:INST OF PROCESS ENG CHINESE ACAD OF SCI

A gradient laminated composite supporting frame material based on bionic structures and its preparation method

The invention relates to a kind of laminated gradient composite scaffold material based on the bionic structure and its preparation method. The said material has three or more layers of porous structure, comprising of hyaluronic acid, PLGA, PLA, collagen II and nano-hydroxyapatite (nano-HA) , beta- tricalcium phosphate ( beta-TCP). The upper layer is made by collagen II / hyaluronic acid or PLGA and PLA imitating the cartilage layer. With the counterfeit the calcified cartilage layer in the middle, it is one layer or multi- sublayer, made by nano-HA or beta-TCP with collagen II / hyaluronic acid or PLGA and PLA; the bottom is made of nano-HA or beta-TCP with collagen II or PLGA and PLA. From top to bottom, the content of inorganic material increases in its layers, about 0 to 60 mass percent of layers. The aperture of the scaffold material is 50 to 450 micron, with 70 to 93 percent porosity. The scaffold material made by this invention has an adjustable degradation rate, good mechanical and biocompatible properties, can adapt to culture with cartilage bone cells and compound with growth factor and small molecular or peptides, it can be used to repair cartilage simultaneously.
Owner:HUAZHONG UNIV OF SCI & TECH

Method for creating an internal transport system within tissue scaffolds using computer-aided tissue engineering

An artificial tissue including an internal mass transport network having a plurality of channels, wherein the channels are designed to substantially mimic naturally occurring vascular network and a method for creating an internal transport system within a tissue scaffold to improve circulation, diffusion, and mass transport properties by utilizing computer-aided tissue engineering (CATE). The artificial tissue has the internal mass transport network of channels embedded, deposited, or molded within a scaffold, wherein the channels are made from a biodegradable transporting material and the scaffold is made from a scaffold material. The artificial tissue of the invention includes a basic circulatory system embedded within the tissue scaffold. This system provides mass transport throughout the entire scaffold and degrades after the new circulatory system develops.
Owner:DREXEL UNIV

Construction method of anticoagulant artificial blood vessel scaffold material

InactiveCN102961783AInduce and promote regenerationPromote regenerationStentsBlood vesselsFiberSignalling molecules
The invention discloses a construction method of an anticoagulant artificial blood vessel scaffold material. The method includes: taking a rotating stainless steel pipe as a receiver, employing an electrospinning technology to prepare an organic macromolecular polymer, a mixture of a Cu2<+> complex catalyst and the organic macromolecular polymer, and the organic macromolecular polymer successively into a three-layer structured superfine fiber porous tubular scaffold material; and regulating the types and proportion of the Cu2<+> complex catalyst and the organic macromolecular polymer, as well as the electrospinning time of a three-layer electrospinning solution so as to control the release rate of NO. With a three-layer structure, the blood vessel scaffold material formed by the invention not only realizes loading of the Cu2<+> organic complex catalyst, but also improves the phenomenon of NO burst release catalyzed by an ordinary hybrid electrospun structure scaffold material, improves the loading stability of the Cu2<+> complex catalyst, and can leave the biological signal molecule NO to play a better role in inhibiting platelet adhesion, resisting platelet activation and inhibiting smooth muscle cell proliferation so as to improve its anticoagulant property.
Owner:NANKAI UNIV

Decellularized matrix-source tissue engineering scaffold and preparation method and application thereof

The invention relates to a decellularized matrix-source tissue engineering scaffold and a preparation method and an application thereof; the decellularized matrix-source tissue engineering scaffold takes a treated animal membrane material as a biological membrane base material, and the surface of the biological membrane base material is attached with a collagen loose layer. The preparation method of the decellularized matrix source tissue engineering scaffold comprises the process steps of degreasing, decellularizing, antigen removal, cross-linking fixation, collagen extraction, collagen compositing and the like. The flexible and smooth animal membrane material is used as the biological membrane base material, and the defects that a pure collagen scaffold has poor mechanical properties and too fast degradation rate are overcome; with cooperation of the collagen loose layer, a good microenvironment is provided for tissue regenerative repair and cell growth; after being implanted into a body, the decellularized matrix-source tissue engineering scaffold material is gradually degraded along with repairing of defect tissues, also has controllable degradation time, does not exist as a permanent foreign matter, and has no any residual toxicity.
Owner:广州市美昊生物科技有限公司 +1

Tissue engineering scaffold material of chemical bonding active material and preparation method thereof

The invention provides a tissue engineering scaffold material of a chemical bonding active material and a preparation method of the tissue engineering scaffold material. The tissue engineering scaffold material of the chemical bonding active material is prepared by a biodegradable macromolecular substance and an active material, wherein the macromolecular substance is counted by 100 parts by weight, and the active material is 0-15 part(s) by weight but is not zero; the 100 parts by weight of the macromolecular substance consists of 50-100 parts by weight of the synthesized macromolecular substance and 0-50 part(s) by weight of natural macromolecular substance; and a macromolecular nano-fiber film or a composite macromolecular nano-fiber film is formed by the macromolecular substance by means of electrostatic spinning, and the active material is evenly bonded on the surface of the fiber film. The tissue engineering scaffold material of the chemical bonding active material provided by the invention is good in biocompatibility, enough in mechanical strength, biodegradable, and suitable for stem cell proliferation and directed differentiation, and has the functions of cell migration adhesion promotion and stem cell capture to induce the regeneration of tissues such as bone, cartilage, nerve, skin, etc.
Owner:江西欧芮槿生物科技有限公司 +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products