Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

682results about How to "Promote ingrowth" patented technology

Bone repair porous bracket and rapid forming method

ActiveCN102886076ALong-acting growth inducerGrowth conductionProsthesisControl releaseBone tissue
The invention relates to a bone repair porous bracket, which comprises a substrate with a bionic porous structure and growth factor controlled-release microspheres, wherein the growth factor controlled-release microspheres are adsorbed into gaps of the bionic porous structure on the substrate or are dispersed into the substrate by being uniformly mixed with substrate raw material in a substrate forming process. The invention further provides a rapid forming method for the bone repair porous bracket. The method comprises the following steps of: preparing growth factor controlled-release microspheres; forming a substrate; and adsorbing. The invention further provides another rapid forming method for the bone repairing porous bracket. The method comprises a step for preparing growth factor controlled-release microspheres and a step for forming a substrate. The growth factor controlled-release microspheres are introduced into the bracket, bone growth can be induced under the action of the controlled release of growth factors, and inward bone tissue growth is facilitated through a porous structure formed by degradation of the controlled-release microspheres, so that bone tissue regeneration repair is achieved, and bone healing is facilitated effectively. Three-dimensional printing is performed by adding controlled-release microspheres and adopting a rapid forming technology, and a forming process is simple and rapid.
Owner:RESEARCH INSTITUTE OF TSINGHUA UNIVERSITY IN SHENZHEN

Degradable open porous magnesium and magnesium alloy biomaterial and preparation method thereof

ActiveCN104232972ANo residueUniform distribution throughoutProsthesisPorosityPressure casting
The invention discloses a degradable open porous magnesium and magnesium alloy biomaterial and a preparation method thereof. The magnesium and magnesium alloy biomaterial is in a completely open structure, the hole shape and size are controllable, holes are communicated by virtue of communicating holes, and the number and size of the communicating holes in hole walls are controllable; the holes are uniformly distributed and the porosity is adjustable. The preparation method comprises the following steps: sintering sodium chloride crystal particles to obtain an open porous sodium chloride prefabricated structure; pouring molten magnesium or magnesium alloy into a mould cavity with a sodium chloride prefabricated body, and performing seepage pressure casting; and removing magnesium or magnesium alloy block outer skin with the sodium chloride prefabricated body, washing with alkali, and filtering to remove sodium chloride to obtain the degradable open porous magnesium and magnesium alloy biomaterial. The preparation process is simple, convenient to perform and pollution-free; the prepared open porous structure is provided with the communicated and uniformly distributed holes, is controllable in hole shape and size, relatively high in porosity and strength, free of pore former residues and pore closing phenomenon and adjustable in degradation rate, and can serve as a new-generation degradable bone tissue engineering scaffold.
Owner:SHANGHAI INNOVATON MEDICAL TECH CO LTD

Bio-medical porous titanium products and preparation method thereof

The invention relates to a biological medical porous titanium material and a preparation method thereof. The preparation method, namely a method adopting powder metallurgy, is to add spherical particles of novel polymethyl methacrylate pore-forming agent to prepare a structure provided with a rough surface and three-dimensionally communicated open pores, wherein the number, the shape and the size of the pores can be controlled, namely, the porosity degree is less than 70vol. percent, the open porosity factor is more than 60 percent, the average pore diameter is less than 500 mums, the Young's modulus in compression is more than 0.3 GPa, the compressive strength is more than 40MPa, and the bending strength is more than 50MPa. The biological medical porous titanium material can be widely applied in the field of biological medical implants such as dental implants, artificial joints, spinal orthopaedic internal fixed systems, medullary internal nails and orthopaedic armor plates.
Owner:DALIAN JIAOTONG UNIVERSITY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products