Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1177 results about "Implant material" patented technology

Composition comprising an agent providing a signal, an implant material and a drug

InactiveUS20060177379A1Facilitated releaseAvoid impairment of material compositionMaterial nanotechnologySurgeryTreatment effectBULK ACTIVE INGREDIENT
The present invention relates to compositions or combinations of materials for non-degradable and degradable implantable medical devices with regard to the setup of their signal generating properties and control of their therapeutic effectiveness, as well as to a method for the control of degradation of degradable or partially degradable medical devices composed like this, based on their signal generation, and to a method for supervision of their therapeutic effectiveness and / or the release of therapeutically active ingredients from such devices.
Owner:CINVENTION AG

Method for preparing medical porous tantalum implant material

The invention discloses a method for preparing a medical porous tantalum material. The method comprises the following steps of: mixing a poly ethanol aqueous solution and tantalum powder to obtain slurry, wherein the mass concentration of the poly ethanol aqueous solution is 2 to 8 percent; injecting the slurry into an organic foam by vibrating and pressurizing, wherein the vibrating frequency is 20 to 80 times/min; drying; degreasing; sintering, namely raising temperature to 1,500 to 1,800 DEG C at the speed of 10 to 20 DEG C/min under the vacuum degree of 10<-4> to 10<-3>Pa, preserving heat for 120 to 240 minutes, cooling to 200 to 300 DEG C along with a furnace, raising temperature to 1,500 to 1,800 DEG C at the speed of 10 to 20 DEG C/min again, preserving heat for 180 to 240 minutes, raising temperature to 2,000 to 2,200 DEG C at the speed of 5 to 10 DEG C/min, and preserving heat for 120 to 360 minutes; cooling; and performing thermal treatment, namely raising temperature to 800 to 900 DEG C at the speed of 10 to 20 DEG C/min under the vacuum degree of 10<-4> to 10<-3> Pa, preserving heat for 240 to 480 minutes, cooling to 400 DGE C at the speed of 2 to 5 DGE C/min, preserving heat for 120 to 300 minutes, and cooling to room temperature along with the furnace. The porous tantalum prepared by the method is very suitable to be used for the medical implant material for replacing bearing bone tissues, and biocompatibility and the mechanical property can be guaranteed simultaneously.
Owner:CHONGQING RUNZE PHARM CO LTD

Remotely actuated system for bone cement delivery

InactiveUS20050113843A1Discourage complianceSurgical needlesMedical devicesSyringeImplant material
An injection system for delivering viscous fluids is disclosed. Exemplary fluids included flowable hard tissue implant material such as Polymethylmethacrylate (PMMA). The system comprises a manual actuator, a control line and a dispenser. The control line may be flexible cable set within a housing running between the actuator and dispenser head. In which case, the actuator is designed to enable reciprocal movement of the cable relative to the cable housing. The actuator may be designed for one-handed use like a syringe. Components of the dispenser may be utilized as a mixing vessel prior to inserting a drive unit to enable fluid delivery. Prior to use, fluid is loaded into a portion section of the drive unit from a reservoir section of the dispenser head by retracing the cable via the retractor. Fluid is expelled from the dispenser portion of the system upon advancing the cable.
Owner:ARTHROCARE

Controlling resorption of bioresorbable medical implant material

InactiveUS20020138154A1Different and fast resorption rateAnti-incontinence devicesCatheterPorosityBody fluid
The resorption of a medical implant can be controlled with the use of particles embedded in a resorbable bulk material forming the implant or portion thereof. The implant can be removed from a body of a mammal by natural biological mechanisms after use. The resorption of the implant can involve swelling and / or hydrolyzing of the particles within the implant upon contact with a body fluid such that porosity and flow of fluid within the bulk material of the implant is increased. Resorption of the implant may also involve the use of particles with magnetic properties embedded within the implant such that an applied magnetic field causes the particles to vibrate within the bulk material thereby increasing the porosity and thus the flow of fluid, hence facilitating resorption of the implant. The resorption rate of the implant can be controlled by modulating swelling, hydrolysis, or movement of the embedded particles.
Owner:BOSTON SCI SCIMED INC

Self-Expandable Endovascular Device For Aneurysm Occlusion

The self-expandable endovascular apparatus for aneurysm occlusion of the invention comprises a deformable shape memory frame with at least a partial segment covering comprised of a matrix implant material. The device can be folded and / or stretched to adopt a narrow profile for loading into a coaxial delivery device and expands in place as it adopts its original shape on release from the device into an aneurysm. A method of treating an aneurysm, comprises the steps of: (a) providing the self-expandable endovascular apparatus inserted into a lumen of a delivery device comprising a proximal end and a distal end, the distal end having a distal tip; (b) advancing the distal tip of the delivery device into an opening in an aneurysm having an interior sac; (c) advancing the apparatus through the lumen into the opening; and (d) withdrawing the delivery device, whereby the apparatus expands into the sac and covers the opening.
Owner:BIOMERIX CORP

Enhanced visibility materials for implantation in hard tissue

An enhanced visibility composition for implantation from a remote source, so that the composition can be readily observed under fluoroscopy or other imaging techniques is disclosed. The compositions include a biocompatible matrix, such as a hard tissue implant material for example, and radiopaque tracer particles mixed in the matrix. The radiopaque tracer particles have a particle size between about 120μ and 2200μ, more preferably about 350μ and 2200μ, even more preferably between about 450μ and 1600μ, and most preferably between about 570μ and 1150μ. Preferably the hard tissue implant and the radiopaque tracer particles are formed or prepared in a slurry. Optionally, the enhanced visibility composition may further include additional radiopaque contrast particles mixed in with the composition, which have a particle size between about 120μ and 350μ, preferably between about 120μ and 250μ.
Owner:ARTHROCARE

Strontium fortified calcium nano-and microparticle compositions and methods of making and using thereof

Compositions containing strontium fortified calcium nanoparticles and/or microparticles, and methods of making and using thereof are described herein. The strontium fortified calcium compounds contain calcium ions, calcium atoms, strontium ions, strontium atoms, and combinations thereof and one or more anions. Exemplary anions include, but are not limited to, citrate, phosphate, carbonate, and combinations thereof. The particles can be formulated for enteral or parenteral administration by incorporating the particles into a pharmaceutically carrier. The compositions can further contain one or more active agents useful for bone diseases or disorders, such as vitamin D, growth factors, and combinations thereof. The compositions can be used to treat or prevent one or more bone diseases or disorders of the bone, such as osteoporosis. Alternatively, the particles can be coated onto a substrate, such as the surface of an implant. The coatings can be used to improved biocompatibility of the implant, prevent loosening of the implant, reducing leaching of metal ions from metallic implants, and reduce corrosion. The coatings can be applied to the substrate using a variety of techniques well known in the art. In one embodiment, the coating is applied using electrophoretic deposition. The use of nano- and/or microparticles that provide high surface area helps to improve interfacial strength between the coating and the implant, which allows for the use of lower sintering temperatures. Lowering sintering temperatures minimizes or prevents thermal decomposition of the coating material and/or degradation of the implant material.
Owner:THE UNIVERSITY OF HONG KONG

Container for lyophilization and storage of tissue

InactiveUS20070074989A1Resist absorption and discolorationEasy accessSurgical furnitureDiagnosticsBiomedical engineeringFlange
A sterile container assembly for storing sterile allograft tissue implant material is constructed with sidewalls, end walls and a base member defining an open faced cavity and a flange surrounding and extending outward from the cavity. A step and a spacer is formed in each end wall of the container and a cylindrical implant container sized to fit into the container cavity is positioned adjacent the end wall spacers. The implant container has a housing and a threadable cap with a vent hole formed therein which is covered by an insert member constructed of sintered PTFE mounted inside the cap. A foil cover is sealed to the flange of the container covering and sealing the container cavity and the cylindrical implant container mounted therein.
Owner:MUSCULOSKELETAL TRANSPLANT FOUND INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products