Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

600 results about "Disc space" patented technology

Method of inserting and preloading spinal implants

InactiveUS6080155ARestoring and maintaining normal angular relationshipFaster and safe and more efficaciousInternal osteosythesisBone implantIntervertebral spaceIntervertebral disk
Apparatus and a method of inserting spinal implants is disclosed in which an intervertebral space is first distracted, a hollow sleeve having teeth at one end is then driven into the vertebrae adjacent that disc space. A drill is then passed through the hollow sleeve removing disc and bone in preparation for receiving the spinal implant which is then inserted through the sleeve. Apparatus and a method of inserting spinal implants is disclosed in which an intervertebral space is first distracted to restore the normal angular relationship of the vertebrae adjacent to that disc space. An extended outer sleeve having extended portions capable of maintaining the vertebrae distracted in their normal angular relationship is then driven into the vertebrae adjacent that disc space. A drill is then passed through the hollow sleeve removing disc and bone in preparation for receiving the spinal implant which is then inserted through the sleeve.
Owner:WARSAW ORTHOPEDIC INC

Apparatus for inserting spinal implants

Apparatus and a method of inserting spinal implants is disclosed in which an intervertebral space is first distracted, a hollow sleeve having teeth at one end is then driven into the vertebrae adjacent that disc space. A drill is then passed through the hollow sleeve removing disc and bone in preparation for receiving the spinal implant which is then inserted through the sleeve.
Owner:WARSAW ORTHOPEDIC INC

Expandable spinal fusion device and methods of promoting spinal fusion

InactiveUS7018415B1Promoting osteogenic fusionMinimal exposureBone implantJoint implantsSpinal columnBone growth
An intervertebral disc space implant includes spaced-apart bone engagement portions that define an intermediate chamber that holds bone growth inducing material into contact with adjacent vertebral bodies. The implant is expandable to establish and maintain desired intervertebral spacing during fusion. The implant includes a first member and a second member arranged to move relative to each other by action of an expansion member, the first member being engageable with the vertebral body below the disc space.
Owner:WARSAW ORTHOPEDIC INC

Methods and apparatus for forming shaped axial bores through spinal vertebrae

One or more shaped axial bore extending from an accessed posterior or anterior target point are formed in the cephalad direction through vertebral bodies and intervening discs, if present, in general alignment with a visualized, trans-sacral axial instrumentation / fusion (TASIF) line in a minimally invasive, low trauma, manner. An anterior axial instrumentation / fusion line (AAIFL) or a posterior axial instrumentation / fusion line (PAIFL) that extends from the anterior or posterior target point, respectively, in the cephalad direction following the spinal curvature through one or more vertebral body is visualized by radiographic or fluoroscopic equipment. Preferably, curved anterior or posterior TASIF axial bores are formed in axial or parallel or diverging alignment with the visualized AAIFL or PAIFL, respectively, employing bore forming tools that can be manipulated from proximal portions thereof that are located outside the patient's body to adjust the curvature of the anterior or posterior TASIF axial bores as they are formed in the cephalad direction. Further bore enlarging tools are employed to enlarge one or more selected section of the anterior or posterior TASIF axial bore(s), e.g., the cephalad bore end or a disc space, so as to provide a recess therein that can be employed for various purposes, e.g., to provide anchoring surfaces for spinal implants inserted into the anterior or posterior TASIF axial bore(s).
Owner:MIS IP HLDG LLC

Devices and techniques for a posterior lateral disc space approach

This invention relates to devices and instruments for implant insertion through a posterior lateral opening to the disc space. The instruments include an implant inserter, and the devices include a spinal fusion implant engageable by the implant inserter. The implant provides bilateral support of the adjacent vertebrae when inserted into the disc space from a postero-lateral approach.
Owner:WARSAW ORTHOPEDIC INC

Artificial spinal unit assemblies

An artificial functional spinal unit is provided comprising, generally, an expandable artificial intervertebral implant that can be placed via a posterior surgical approach and used in conjunction with one or more artificial facet joints to provide an anatomically correct range of motion. Expandable artificial intervertebral implants in both lordotic and non-lordotic designs are disclosed, as well as lordotic and non-lordotic expandable cages for both PLIF (posterior lumber interbody fusion) and TLIF (transforaminal lumbar interbody fusion) procedures. The expandable implants may have various shapes, such as round, square, rectangular, banana-shaped, kidney-shaped, or other similar shapes. By virtue of their posteriorly implanted approach, the disclosed artificial FSU's allow for posterior decompression of the neural elements, reconstruction of all or part of the natural functional spinal unit, restoration and maintenance of lordosis, maintenance of motion, and restoration and maintenance of disc space height.
Owner:FLEXUSPINE

Intervertebral disc nucleus implants and methods

Nucleus pulposus implants that are resistant to migration in and / or expulsion from an intervertebral disc space are provided. In one form of the invention, an implant includes a load bearing elastic body surrounded in the disc space by an anchoring, preferably resorbable, outer shell. In certain forms of the invention, the elastic body is surrounded by a supporting member, such as a band or jacket, and the supporting member is surrounded by the outer shell. Kits for forming such implants are also provided. In another form of the invention, an implant is provided that has locking features and optional shape memory characteristics. In yet another aspect of the invention, nucleus pulposus implants are provided that have shape memory characteristics and are configured to allow short-term manual, or other deformation without permanent deformation, cracks, tears, breakage or other damage. Methods of forming and implanting the implants are also described.
Owner:SDGI HLDG

Spinal implant

A spinal implant may be used to stabilize a portion of a spine. The implant may promote bone growth between adjacent vertebrae that fuses the vertebrae together. An implant may include an opening through a height of a body of the implant. The body of the implant may include curved sides. A top and / or a bottom of the implant may include protrusions that contact and / or engage vertebral surfaces to prevent backout of the implant from the disc space. A variety of instruments may be used to prepare a disc space and insert an implant. The instruments may include, but are not limited to, a distractor, a rasp, and one or more guides. The implant and instruments may be supplied in an instrument kit.
Owner:ZIMMER BIOMET SPINE INC

In situ formation of intervertebral disc implants

Nucleus pulposus implants that are resistant to migration in and / or expulsion from an intervertebral disc space are provided. In one form of the invention, an implant includes a load bearing elastic body surrounded in the disc space by an anchoring, preferably resorbable, biocompatible material which may be in the form of an outer shell. In certain forms of the invention, the elastic body is surrounded by a supporting member, such as a band or jacket, and the supporting member is surrounded by the outer shell. Kits for forming such implants are also provided. In another form of the invention, an implant is provided that has locking features and optional shape memory characteristics. In yet another aspect of the invention, nucleus pulposus implants are provided that have shape memory characteristics and are configured to allow short-term manual, or other deformation without permanent deformation, cracks, tears, breakage or other damage. Methods of forming and implanting the implants are also described, as are delivery devices and components thereof for delivering the implants.
Owner:SDGI HLDG

Instruments and methods for inserting a spinal implant

Instruments of an instrumentation set may be used to prepare a disc space and to insert an implant into the prepared disc space. The instruments may include fixed tip distractors and / or modular tip distractors. The instruments may include a chisel. The chisel may allow simultaneous removal of a desired amount of bone from each of a pair of vertebrae. The instruments may include an implant inserter. The implant inserter may grip sides of an implant. A portion of the implant inserter may fit within grooves of the implant to minimize or eliminate portions of the implant that extend beyond side surfaces of the implant.
Owner:ZIMMER BIOMET SPINE INC

Expandable Self-Anchoring Interbody Cage for Orthopedic Applications

ActiveUS20130158669A1Maintain and create lordosisEasy to useBone implantSpinal implantsSpinal cageInterbody cage
The present invention is directed to an expandable spinal fusion intervertebral implant that provides for maintaining and creating lordosis in the human spine that can be filled with biologics while in situ to encourage spinal fusion. A threaded rod that traverses an insertion / injection handle can be rotated to operate a screw within the interbody cage that displaces opposing vertical tapped sliding wedges, causing them to converge towards each other. Such contact causes the operation of a horizontal wedge that acts as a lift to expand the interbody cage to one of various dimensions in a preferred range. At its desired expansion, the spinal fusion implant of the present invention is sized to fit within the disc space between two vertebral bodies and fill all voids left while the vertical and horizontal wedges operate within, due to the biologics being contained within the interbody cage.
Owner:BLUE TIP BIOLOGICS

Anterior spinal instrumentation and method for implantation and revision

InactiveUSRE37161E1Reliable and decompressionEnhanced rigidity and fixationInternal osteosythesisBone implantSpinal columnBone trephine
A system and method for anterior fixation of the spine utilizes a cylindrical implant engaged in the intradiscal space at the cephalad and caudal ends of the construct. The implants are cylindrical fusion devices (10) filled with bone material to promote bone ingrowth and fusion of the disc space. An attachment member (40) is connected to each of the fusion devices (10) and bone screws (30) having similar attachment members (33) are engaged in the vertebral bodies of the intermediate vertebrae. A spinal rod (50) is connected to each of the attachment members using an eyebolt assembly (53, 54, 55). In a further inventive method, a revision of the construct is achieved by removing the fusion devices. Each fusion device is engaged by an elongated guide member (62) over which a cylindrical trephine (70) is advanced. The trephine (70) has an inner diameter larger than the diameter of the fusion implant and includes cutting teeth (72) for extracting a core (84) of bone material around the fusion implant. The trephine (70) and guide member (62) are removed along with the bone core (84) containing the fusion implant (10). The trephine (70) is also used to extract a bone dowel from a solid bone mass to be inserted into the space left by the removed bone core (84).
Owner:MICHELSON GARY K +1

Artificial functional spinal unit assemblies

An artificial functional spinal unit is provided comprising, generally, an expandable artificial intervertebral implant that can be placed via a posterior surgical approach and used in conjunction with one or more artificial facet joints to provide an anatomically correct range of motion. Expandable artificial intervertebral implants in both lordotic and non-lordotic designs are disclosed, as well as lordotic and non-lordotic expandable cages for both PLIF (posterior lumber interbody fusion) and TLIF (transforaminal lumbar interbody fusion) procedures. The expandable implants may have various shapes, such as round, square, rectangular, banana-shaped, kidney-shaped, or other similar shapes. By virtue of their posteriorly implanted approach, the disclosed artificial FSU's allow for posterior decompression of the neural elements, reconstruction of all or part of the natural functional spinal unit, restoration and maintenance of lordosis, maintenance of motion, and restoration and maintenance of disc space height.
Owner:FLEXUSPINE INC

Annulus fibrosis augmentation methods and apparatus

A device and method are used in fortifying an intervertebral disc having an annulus fibrosis with an inner wall. According to the method, a hole is formed through the annulus fibrosis, and a collapsed bag is inserted into the disc through the hole. The bag is inflated, or allowed to expand within the disc space, then filling with one or more biocompatible materials. The hole in the annulus fibrosis is then closed. In one preferred embodiment, the bag includes an inflatable bladder or balloon which is filled with a gas or liquid to expand the bag. In an alternative preferred embodiment, the bag includes a self-expanding frame that assumes a collapsed state for introduction into the disc space and an expanded state once inserted through the hole in the annulus. The self-expanding frame is composed of a shape-memory material, for example. The bag preferably features a wall which is porous to allow for the diffusion of body fluids therethrough, and the bag and / or frame may be fastened to the inner wall of the annulus at one or more points. The biocompatible material may include autograft nucleus pulposis, allograft nucleus pulposis or xenograft nucleus pulposis. In the preferred embodiment, the biocompatible material includes morselized nucleus or annulus from the same disc.
Owner:ANOVA

Artificial functional spinal unit assemblies

An artificial functional spinal unit is provided comprising, generally, an expandable artificial intervertebral implant that can be placed via a posterior surgical approach and used in conjunction with one or more artificial facet joints to provide an anatomically correct range of motion. Expandable artificial intervertebral implants in both lordotic and non-lordotic designs are disclosed, as well as lordotic and non-lordotic expandable cages for both PLIF (posterior lumber interbody fusion) and TLIF (transforaminal lumbar interbody fusion) procedures. The expandable implants may have various shapes, such as round, square, rectangular, banana-shaped, kidney-shaped, or other similar shapes. By virtue of their posteriorly implanted approach, the disclosed artificial FSU's allow for posterior decompression of the neural elements, reconstruction of all or part of the natural functional spinal unit, restoration and maintenance of lordosis, maintenance of motion, and restoration and maintenance of disc space height.
Owner:FLEXUSPINE INC

Steerable interbody fusion cage

An interbody vertebral cage facilitates minimally invasive approaches to the intervertebral disc for corrective restoration of disc height, stabilization between vertebra, and fusion. The preferred embodiment provides a streamlined, slender straight contour with a central hinge or other articulating apparatus that allows the introduction of the cage into the operative field and disc space in a minimally invasive, bone-sparing manner. After partial insertion, the hinge component is activated, allowing the operator to steer the cage anterior-medially within the disc space to an anterior-central position within the intervertebral space. In this state the cage is shaped like a crescent, chevron or boomerang.
Owner:CTL MEDICAL CORP

Intervertebral devices and methods

An expandable device for spinal fusion or vertebral disc replacement that is inserted via a minimally invasive surgery approach and that is expanded inside the vertebral disc space. The device is configured to expand in at least one of a medial, a lateral, an anterior, a posterior, a superior and an inferior direction and to restrict further expansion of at least one of the medial, lateral, anterior and posterior direction after reaching a maximum allowing further expansion in superior or inferior direction.
Owner:VERTEGEN

Zero-profile interbody spacer and coupled plate assembly

An implant for insertion into the disc space between vertebrae. The implant including a spacer portion, a plate portion coupled to the spacer portion, a plurality of bone fixation elements for engaging the vertebrae and a retention mechanism for preventing the bone fixation elements from postoperatively uncoupling from the implant.
Owner:DEPUY SYNTHES PROD INC

Articular disc prosthesis and method for implanting the same

An articular disc prosthesis and method of implanting the same within an intervertebral space between adjacent vertebral bodies. The prosthesis includes a pair of articular components and an articular ball disposed therebetween. Each of the articular components includes an outer shell portion and a removable inner insert portion. The insert portion includes a concave articular surface sized and shaped to receive a portion of the articular ball to provide articulating motion between the articular components. The outer shell portion includes a central hemi-cylindrical portion, a pair of laterally extending flanges, and an axially extending lip. Following removal of the natural intervertebral disc, a pair of hemi-cylindrical recesses are formed along a central region of the adjacent vertebral bodies to a predetermined depth. The prosthesis is implanted within the prepared disc space by axially displacing the hemi-cylindrical central portions of the articular components along the hemi-cylindrical recesses in the vertebral bodies. The lateral flanges and the axial lip of the articular components bear against the endplates of the adjacent vertebral bodies to stabilize the prosthesis and to prevent subsidence.
Owner:WARSAW ORTHOPEDIC INC

Device for lumbar surgery

InactiveUS20050171541A1Shorten recovery timeReduces the trauma to the patientInternal osteosythesisBone implantDilatorIntervertebral space
A method for performing percutaneous interbody fusion is disclosed. The method includes the steps of inserting a guide needle posteriorly to the disc space, inserting a dilator having an inner diameter slightly larger than the outer diameter of the guide needle over the guide needle to the disc space to enlarge the disc space, and successively passing a series of dilators, each having an inner diameter slightly larger than the outer diameter of the previous dilator, over the previous dilator to the disc space the gradually and incrementally increase the height of the disc space. Once the desired disc height is achieved, the guide needle and all the dilators, with the exception of the outermost dilator, are removed. An expandible intervertebral disc spacer is then passed through the remaining dilator and positioned in the disc space. The disc spacer is expanded to the required disc height, and then a bone matrix is passed through the dilator to fill the disc space. The dilator is then removed. An expandible intervertebral disc spacer is also disclosed, having a tapered bore that causes greater expansion of one end of the spacer with respect to the other. A kit for performing the percutaneous interbody fusion procedure is also disclosed.
Owner:BOEHM FR H JR +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Eureka Blog
Learn More
PatSnap group products