Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1463 results about "High resistivity" patented technology

Low resistivity is a material intrinsic property which readily allows the movement of electrons. Conversely, a high-resistivity material has a high electrical resistance and impedes the flow of electrons. Elements such as copper and aluminum are known for their low levels of resistivity.

Thin film write head with improved laminated flux carrying structure and method of fabrication

The present invention provides a thin film write head having an improved laminated flux carrying structure and method of fabrication. The preferred embodiment provides laminated layers of: high moment magnetic material, and easily aligned high resistivity magnetic material. In the preferred embodiment, the easily aligned laminating layer induces uniaxial anisotropy, by exchange coupling, to improve uniaxial anisotropy in the high moment material. This allows deposition induced uniaxial anisotropy by DC magnetron sputtering and also provides improved post deposition annealing, if desired. It is preferred to laminate FeXN, such as FeRhN, or other crystalline structure material, with an amorphous alloy material, preferably Co based, such as CoZrCr. In the preferred embodiment, upper and lower pole structures may both be laminated as discussed above. Such laminated structures have higher Bs than structures with insulative laminates, and yokes and pole tips and may be integrally formed, if desired, because flux may travel along or across the laminating layers. The preferred embodiment of the present invention improves soft magnetic properties, reduces eddy currents, improves hard axis alignment while not deleteriously affecting the coercivity, permeability, and magnetostriction of the structure, thus allowing for improved high frequency operation.
Owner:WESTERN DIGITAL TECH INC +1

Method of manufacturing a multilayer semiconductor structure with reduced ohmic losses

InactiveUS20070032040A1Reduce and minimiseElectrical losses are reducedSolid-state devicesSemiconductor/solid-state device manufacturingInter layerSemiconductor structure
The present invention provides a method of manufacturing a multilayer semiconductor structure featuring reduced ohmic losses with respect to standard multilayer semiconductor structures. The semiconductor structure comprises a high resistivity silicon substrate with resistivity higher than 3 KΩ.cm, an active semiconductor layer and an insulating layer in between the silicon substrate and the active semiconductor layer. The method comprises suppressing ohmic losses inside the high resistivity silicon substrate by increasing, with regard to prior art devices, charge trap density between the insulating layer and the silicon substrate. In particular this may be obtained by applying an intermediate layer in between the silicon substrate and the insulating layer, the intermediate layer comprising grains having a size, wherein the mean size of the grains of the intermediate layer is smaller than 150 nm, preferably smaller than 50 nm.
Owner:UNIV CATHOLIQUE DE LOVAIN

Top spin valve with improved seed layer

InactiveUS6687098B1Improved exchange bias fieldNanostructure applicationNanomagnetismEngineeringHigh resistivity
The present invention provides an improved top spin valve and method of fabrication. In the preferred embodiment of the top spin valve of the present invention, a seed layer is formed of non-magnetic material having the elements Ni and Cr. In the preferred embodiments, the seed layer material has an ion milling rate comparable to that of the free layer material. This allows free layer sidewalls to be formed with shorter tails, improving free layer-to-magnetic bias layer junction, thus improving free layer domain structure and track width. In one embodiment, the seed layer may have NiFeCr, with Cr from about 20% to 50%. In another embodiment, the seed layer may have NiCr, with about 40%. Some embodiments may have the seed layer formed on an optional Ta pre-seed layer. Such embodiments provide an improved fcc (111) texture particularly for NiFe and for NiFe/CoFe free layers grown on a seed layer improving spin valve performance, and especially in embodiments having very thin NiFe free layers, ultra thin NiFe free layers, and free layers without NiFe, such as a free layer of CoFe. Such a seed layer can improve AFM pinning layer texture to improve the exchange bias, thus providing better thermal stability. Such a seed layer also provides high resistivity and can improve the magnetostriction of adjacent NiFe free layer material or improve the soft properties of an adjacent CoFe free layer.
Owner:WESTERN DIGITAL TECH INC

Light-emitting diode device and method of manufacturing the same

A light-emitting diode device, such as a blue, green, blue-green light-emitting diode, with a one-wire-bonding characteristic and the method of manufacturing the same have been disclosed. The light-emitting diode device has a GaN-based semiconductor laminated structure formed on an insulating substrate. The GaN-based semiconductor laminated structure includes an n-type layer on its bottom side, a p-type layer on its top side, and an active layer, for generating light, sandwiched between the n-type and p-type layers. An annular isolation portion such as a trench or a high resistivity portion formed by ion implantation is formed in the GaN-based semiconductor laminated structure to separate the p-type layer into a central p-type layer and a peripheral p-type layer and to separate the active layer into a central active layer and a peripheral active layer. A p-type electrode is formed on the central p-type layer without electrically connecting to the peripheral p-type layer. A conductive layer is coated to cover the sidewalls and the bottom surface of the insulating substrate and to ohmically contact with the n-type layer. Preferably, an adhesion layer is sandwiched between the sidewalls and the bottom surface of the insulating substrate and the conductive layer to enhance the adhesive property. According to the present invention, the conductive layer may be formed as a mirror-like reflector or a light-transmissive layer.
Owner:EPISTAR CORP

Low-resistivity photon-transparent window attached to photo-sensitive silicon detector

The invention comprises a combination of a low resistivity, or electrically conducting, silicon layer that is transparent to long or short wavelength photons and is attached to the backside of a photon-sensitive layer of silicon, such as a silicon wafer or chip. The window is applied to photon sensitive silicon devices such as photodiodes, charge-coupled devices, active pixel sensors, low-energy x-ray sensors and other radiation detectors. The silicon window is applied to the back side of a photosensitive silicon wafer or chip so that photons can illuminate the device from the backside without interference from the circuit printed on the frontside. A voltage sufficient to fully deplete the high-resistivity photosensitive silicon volume of charge carriers is applied between the low-resistivity back window and the front, patterned, side of the device. This allows photon-induced charge created at the backside to reach the front side of the device and to be processed by any circuitry attached to the front side. Using the inventive combination, the photon sensitive silicon layer does not need to be thinned beyond standard fabrication methods in order to achieve full charge-depletion in the silicon volume. In one embodiment, the inventive backside window is applied to high resistivity silicon to allow backside illumination while maintaining charge isolation in CCD pixels.
Owner:RGT UNIV OF CALIFORNIA

Method and apparatus for sensing and characterizing particles

Apparatus for sensing and characterizing particles (e.g., blood cells or ceramic powders) suspended in a liquid medium comprises a conduit through which the particle suspension is caused to pass simultaneously with an electrical current. According to the invention, the interior wall of the conduit effectively varies in resistivity along the length of the conduit to define a delimited central region of high electrical resistivity which is smoothly contiguous on its opposing boundaries to uninsulated distal elements of lesser electrical resistivity. The delimited central region of the conduit functions as a Coulter volumeter conduit. The uninsulated distal elements of the conduit are made to have a dimension along the conduit wall which is at least equal to the axial extent of the effective ambit electric fields of a traditional Coulter volumeter conduit having a cross-sectional geometry identical to that of the delimited central region of high resistivity in the improved volumeter conduit. According to a preferred embodiment of the invention, the delimited central region of the improved volumeter conduit is defined by a traditional Coulter conduit wafer, i.e., a dielectric wafer containing a central circular conduit, and the distal elements of lesser resistivity are defined by uninsulated, electrically conductive, circular collars attached to opposite sides of the conduit wafer. The conduit in the conduit wafer and the openings in the conductive collars collectively form a hydrodynamically smooth volumeter conduit, in which the electric and hydrodynamic fields of the traditional volumeter conduit are advantageously amended in the manner above noted.
Owner:COULTER INTERNATIONAL CORPORATION

Method and apparatus for fully integrating a voltage controlled oscillator on an integrated circuit

A method and apparatus for fully integrating a Voltage Controlled Oscillator (VCO) on an integrated circuit. The VCO is implemented using a differential-mode circuit design. The differential-mode implementation of the VCO preferably comprises a differential mode LC-resonator circuit, a digital capacitor, a differential pair amplifier, and a current source. The LC-resonator circuit includes at least one tuning varactor and two high Q inductors. The tuning varactor preferably has a wide tuning capacitance range. The tuning varactor is only used to "fine-tune" the center output frequency f0 of the VCO. The center output frequency f0 is coarsely tuned by the digital capacitor. The VCO high Q inductors comprise high gain, high self-resonance, and low loss IC inductors. The IC VCO is fabricated on a high resistivity substrate material using a trench isolated guard ring. The guard ring isolates the fully integrated VCO, and each of its component parts, from RF signals that may be introduced into the IC substrate by other devices. By virtue of the improved performance characteristics provided by the digital capacitor, the analog tuning varactor, the high Q inductor, and the trench isolated guard ring techniques, the inventive VCO is fully integrated despite process variations in IC fabrication.
Owner:CSR TECH INC

High resistivity soi base wafer using thermally annealed substrate

ActiveUS20090110898A1Reduces interstitial oxygen concentrationSuppresses thermal donor formationSolid-state devicesSemiconductor/solid-state device manufacturingSurface layerHigh resistivity
A method of forming a semiconductor-on-insulator (SOI) substrate using a thermal annealing process to provide a semiconductor base wafer having a thin high resistivity surface layer that is positioned at the interface with the buried insulating layer is provided. Specifically, the inventive method fabricates an a semiconductor-on-insulator (SOI) substrate having an SOI layer and a semiconductor base wafer that are separated, at least in part, by a buried insulating layer, wherein the semiconductor base wafer includes a high resistivity (HR) surface layer located on a lower resistivity semiconductor portion of the semiconductor base wafer, and the HR surface layer forms an interface with the buried insulating layer.
Owner:GLOBALFOUNDRIES US INC

Circuit and system of using at least one junction diode as program selector for memories

At least one junction diode fabricated in standard CMOS logic processes can be used as program selectors for memory cells that can be programmed based on direction of current flow. These cells are MRAM, RRAM, CBRAM, or other memory cells that have a programmable resistive element coupled to a P terminal of a first diode and to an N terminal of a second diode. The diodes can be constructed by P+ and N+ active regions on an N well as the P and N terminals of the diodes. The memory cells can be used to construct a two-dimensional memory array with the N terminals of the first diodes and the P terminals of the second diodes in a row connected as wordline(s) and the resistive elements in a column connected as a bitline. By applying a high voltage to a selected bitline and a low voltage to a selected wordline to turn on the first diode while disabling the second diode, a selected cell can be programmed into one state. Similarly, by applying a low voltage to a selected bitline and a high voltage to a selected wordline to turn on the second diode while disabling the first diode, a selected cell can be programmed into another state. The data in the resistive memory cell can also be read by turning on a selected wordline to couple a selected bitline to a sense amplifier. The wordlines may have high-resistivity local wordlines coupled to low-resistivity global wordlines through conductive contact(s) or via(s).
Owner:ATTOPSEMI TECH CO LTD

One-time programmable memories using junction diodes as program selectors

Junction diodes fabricated in standard CMOS logic processes can be used as program selectors for One-Time Programmable (OTP) devices, such as electrical fuse, contact / via fuse, contact / via anti-fuse, or gate-oxide breakdown anti-fuse, etc. The diode can be constructed by P+ and N+ active regions on an N well as the P and N terminals of the diode. The OTP device has an OTP element coupled to the diode. The OTP device can be used to construct a two-dimensional OTP memory with the N terminals of the diodes in a row connected as a wordline and the OTP elements in a column connected as a bitline. By applying a high voltage between a selected bitline and a selected wordline to turn on a diode in a selected cell for suitable duration of time, a current flows through an OTP element in series with the program selector may change the resistance state. The cell data in the OTP memory can also be read by turning on a selected wordline and to couple a selected bitline to a sense amplifier. The wordlines may have high-resistivity local wordlines coupled to low-resistivity global wordlines through conductive contact(s) or via(s).
Owner:ATTOPSEMI TECH CO LTD

Resistive heaters and uses thereof

A metallic resistive heater and a method of production are described. The resistive heater has a metallic component that is electrically conductive (i.e. has low resistivity) and an oxide, nitride, carbide, and or boride derivative of the metallic component that is electrically insulating (i.e., has high resistivity). The resistivity is controlled by controlling the amount of oxide, nitride, carbide, and boride formation during the deposition of the metallic component and the derivative.
Owner:REGAL WARE

Rare Earth Composite Magnets with Increased Resistivity

Dielectric rare earth fluorides are blended with rare earth magnet powders to produce high-resistivity fluoride composite rare earth magnets.
Owner:ELECTRON ENERGY CORP +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products