Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3478results about How to "Reduce parasitic capacitance" patented technology

Power semiconductor devices and methods of manufacture

Various embodiments for improved power devices as well as their methods of manufacture, packaging and circuitry incorporating the same for use in a wide variety of power electronic applications are disclosed. One aspect of the invention combines a number of charge balancing techniques and other techniques for reducing parasitic capacitance to arrive at different embodiments for power devices with improved voltage performance, higher switching speed, and lower on-resistance. Another aspect of the invention provides improved termination structures for low, medium and high voltage devices. Improved methods of fabrication for power devices are provided according to other aspects of the invention. Improvements to specific processing steps, such as formation of trenches, formation of dielectric layers inside trenches, formation of mesa structures and processes for reducing substrate thickness, among others, are presented. According to another aspect of the invention, charge balanced power devices incorporate temperature and current sensing elements such as diodes on the same die. Other aspects of the invention improve equivalent series resistance (ESR) for power devices, incorporate additional circuitry on the same chip as the power device and provide improvements to the packaging of charge balanced power devices.
Owner:SEMICON COMPONENTS IND LLC

Power semiconductor devices and methods of manufacture

Various embodiments for improved power devices as well as their methods of manufacture, packaging and circuitry incorporating the same for use in a wide variety of power electronic applications are disclosed. One aspect of the invention combines a number of charge balancing techniques and other techniques for reducing parasitic capacitance to arrive at different embodiments for power devices with improved voltage performance, higher switching speed, and lower on-resistance. Another aspect of the invention provides improved termination structures for low, medium and high voltage devices. Improved methods of fabrication for power devices are provided according to other aspects of the invention. Improvements to specific processing steps, such as formation of trenches, formation of dielectric layers inside trenches, formation of mesa structures and processes for reducing substrate thickness, among others, are presented. According to another aspect of the invention, charge balanced power devices incorporate temperature and current sensing elements such as diodes on the same die. Other aspects of the invention improve equivalent series resistance (ESR) for power devices, incorporate additional circuitry on the same chip as the power device and provide improvements to the packaging of charge balanced power devices.
Owner:SEMICON COMPONENTS IND LLC

Shift register, scan driving circuit and display apparatus having the same

A shift register includes a plurality of stages to generate a plurality of output signals, in sequence. Each of the stages includes a driving circuit, a charging circuit, a discharging circuit and a holding circuit. The driving circuit is configured to generate a first output signal in response to a first clock signal or a second clock signal having a phase different from the first clock signal. The charging circuit is configured to charge an electric charge in response to a scan start signal or a second output signal of an adjacent previous stage. The discharging circuit is configured to discharge the electric charge in response to a third output signal of an adjacent next stage. The holding circuit is configured to maintain the first output signal within a first voltage when the first output signal is in an inactive state. Therefore, a parasite capacitance is decreased to prevent a floating of a pull-up transistor.
Owner:SAMSUNG DISPLAY CO LTD

Power semiconductor devices and methods of manufacture

Various embodiments for improved power devices as well as their methods of manufacture, packaging and circuitry incorporating the same for use in a wide variety of power electronic applications are disclosed. One aspect of the invention combines a number of charge balancing techniques and other techniques for reducing parasitic capacitance to arrive at different embodiments for power devices with improved voltage performance, higher switching speed, and lower on-resistance. Another aspect of the invention provides improved termination structures for low, medium and high voltage devices. Improved methods of fabrication for power devices are provided according to other aspects of the invention. Improvements to specific processing steps, such as formation of trenches, formation of dielectric layers inside trenches, formation of mesa structures and processes for reducing substrate thickness, among others, are presented. According to another aspect of the invention, charge balanced power devices incorporate temperature and current sensing elements such as diodes on the same die. Other aspects of the invention improve equivalent series resistance (ESR) for power devices, incorporate additional circuitry on the same chip as the power device and provide improvements to the packaging of charge balanced power devices.
Owner:SEMICON COMPONENTS IND LLC

Power semiconductor devices and methods of manufacture

Various embodiments for improved power devices as well as their methods of manufacture, packaging and circuitry incorporating the same for use in a wide variety of power electronic applications are disclosed. One aspect of the invention combines a number of charge balancing techniques and other techniques for reducing parasitic capacitance to arrive at different embodiments for power devices with improved voltage performance, higher switching speed, and lower on-resistance. Another aspect of the invention provides improved termination structures for low, medium and high voltage devices. Improved methods of fabrication for power devices are provided according to other aspects of the invention. Improvements to specific processing steps, such as formation of trenches, formation of dielectric layers inside trenches, formation of mesa structures and processes for reducing substrate thickness, among others, are presented. According to another aspect of the invention, charge balanced power devices incorporate temperature and current sensing elements such as diodes on the same die. Other aspects of the invention improve equivalent series resistance (ESR) for power devices, incorporate additional circuitry on the same chip as the power device and provide improvements to the packaging of charge balanced power devices.
Owner:SEMICON COMPONENTS IND LLC

Method for manufacturing semiconductor device

ActiveUS20100035379A1Small photocurrentLow parasitic capacitanceSolid-state devicesSemiconductor/solid-state device manufacturingOxide semiconductorResist
To provide a method by which a semiconductor device including a thin film transistor with excellent electric characteristics and high reliability is manufactured with a small number of steps. After a channel protective layer is formed over an oxide semiconductor film containing In, Ga, and Zn, a film having n-type conductivity and a conductive film are formed, and a resist mask is formed over the conductive film. The conductive film, the film having n-type conductivity, and the oxide semiconductor film containing In, Ga, and Zn are etched using the channel protective layer and gate insulating films as etching stoppers with the resist mask, so that source and drain electrode layers, a buffer layer, and a semiconductor layer are formed.
Owner:SEMICON ENERGY LAB CO LTD

Nitride based transistors on semi-insulating silicon carbide substrates

A high electron mobility transistor (HEMT) (10) is disclosed that includes a semi-insulating silicon carbide substrate (11), an aluminum nitride buffer layer (12) on the substrate, an insulating gallium nitride layer (13) on the buffer layer, an active structure of aluminum gallium nitride (14) on the gallium nitride layer, a passivation layer (23) on the aluminum gallium nitride active structure, and respective source, drain and gate contacts (21, 22, 23) to the aluminum gallium nitride active structure.
Owner:WOLFSPEED INC

Semiconductor devices and method of manufacturing the same

Semiconductor devices, and a method of manufacturing the same, include a gate insulating film pattern over a semiconductor substrate. A gate electrode is formed over the gate insulating film pattern. A spacer structure is formed on at least one side of the gate electrode and the gate insulating film pattern. The spacer structure includes a first insulating film spacer contacting the gate insulating film pattern, and a second insulating film spacer on an outer side of the first insulating film spacer. The semiconductor device has an air gap between the first insulating film spacer and the second insulating film spacer.
Owner:SAMSUNG ELECTRONICS CO LTD

Shift register, liquid crystal display device having the shift register and method of driving scan lines using the same

In a bi-directional shift register and a liquid crystal display device having the bi-directional shift register, the shift register further includes a dummy stage for resetting a last stage. The dummy stage is reset by a control signal of the last stage or by the output signal of the dummy stage. Therefore, power consumption and layout area may be reduced. The shift register includes a plurality of stages and two dummy stages, and two selection signals for selecting shift direction is applied to each of the stages.
Owner:TCL CHINA STAR OPTOELECTRONICS TECH CO LTD

Semiconductor memory device

Positive / negative bit lines are arranged on a second-layer interconnection the VDD power supply interconnection is arranged between the positive / negative bit lines, the word line is arranged on a third-layer interconnection, and the VSS power supply interconnection is arranged on a fourth-layer interconnection. Alternatively, the word line is arranged on the second-layer interconnection, the positive / negative bit lines are arranged on the third-layer interconnection, the VDD power supply interconnection is arranged between the positive / negative bit lines, and the VSS power supply interconnection is arranged on the fourth-layer interconnection. Alternatively, the VDD power supply interconnection is arranged on the second-layer interconnection, the positive / negative bit lines are arranged on the third-layer interconnection, the word line is arranged on the fourth-layer interconnection, and the VSS power supply interconnection is arranged on the fifth-layer interconnection.
Owner:SOCIONEXT INC

Touch screen, liquid crystal display device and driving method of touch screen

The invention discloses a touch screen, a liquid crystal display device and a driving method of the touch screen. The touch screen comprises a display panel, wherein the display panel comprises a first baseplate and a second baseplate, wherein the first baseplate and the second baseplate are oppositely placed, and the second baseplate is provided with a plurality of groups of public electrode wires; a data driving circuit is connected with a data wire and used for supplying a display data driving signal for the data wire in a display mode; a grid driving circuit is connected with a grid wire and used for supplying a display grid driving signal for the grid wire in the display mode and supplying a touch grid driving signal for the grid wire in a touch mode; a public electrode signal generating circuit is connected with the public electrode wire and used for supplying a display public electrode signal for the public electrode wire in the display mode; and a touch driving circuit is connected with the data wire and the public electrode wire and used for supplying the same touch driving signal for the data wire and the public electrode wire in the touch mode, thereby improving the detection accuracy on the touch point position on the touch screen.
Owner:SHANGHAI TIANMA MICRO ELECTRONICS CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products