Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

72results about How to "Reduce metal pollution" patented technology

Substrate supports for semiconductor applications

This invention relates to substrate supports, e.g., coated electrostatic chucks, having a dielectric multilayer formed thereon; dielectric multilayers that provide erosive and corrosive barrier protection in harsh environments such as plasma treating vessels used in semiconductor device manufacture; process chambers, e.g., deposition chambers, for processing substrates; methods for protecting substrate supports; and methods for producing substrate supports and electronic devices. The dielectric multilayer comprises (a) an undercoat dielectric layer comprising a metal oxide or metal nitride formed on a surface; and (b) a topcoat dielectric layer comprising a metal oxide formed on the undercoat dielectric layer. The topcoat dielectric layer has an aluminum oxide content of less than about 1 weight percent. The topcoat dielectric layer has a corrosion resistance and / or plasma erosion resistance greater than the corrosion resistance and / or plasma erosion resistance of the undercoat dielectric layer. The undercoat dielectric layer can have a resistivity greater than the resistivity of the topcoat dielectric layer. The topcoat dielectric layer can have a dielectric constant greater than the dielectric constant of the undercoat dielectric layer. The undercoat dielectric layer can have a porosity greater than the porosity of the topcoat dielectric layer. The invention is useful, for example, in the manufacture and protection of electrostatic chucks used in semiconductor device manufacture.
Owner:FM INDS

Thermal spray composite coatings for semiconductor applications

This invention relates to thermal spray composite coatings on a metal or non-metal substrate. The thermal spray composite coatings comprise (i) a ceramic composite coating undercoat layer having at least two ceramic material phases randomly and uniformly dispersed and / or spatially oriented throughout the ceramic composite coating, and (ii) a ceramic coating topcoat layer applied to the undercoat layer. At least a first ceramic material phase is present in the undercoat layer in an amount sufficient to provide corrosion resistance to the ceramic composite coating, and at least a second ceramic material phase is present in the undercoat layer in an amount sufficient to provide plasma erosion resistance to the ceramic composite coating. This invention also relates to methods of protecting metal and non-metal substrates by applying the thermal spray coatings. The composite coatings provide erosion and corrosion resistance at processing temperatures higher than conventional processing temperatures used in the semiconductor etch industry, e.g., greater than 100° C. The coatings are useful, for example, in the protection of semiconductor manufacturing equipment, e.g., integrated circuit, light emitting diode, display, and photovoltaic, internal chamber components, and electrostatic chuck manufacture.
Owner:PRAXAIR ST TECH INC

Polishing composite for silicon wafer polishing

The invention discloses a silicon wafer polishing composition in the field of chemical mechanical polishing (CMP). The polishing composition comprises silica, a polishing interface control agent, a surfactant, a chelating agent, an alkaline compound and water, wherein the particle diameter of the silica in the polishing composition is between 1 and 200 nm; the content of the silica is between 0.05 and 50 weight percent; the polishing interface control agent is polyhydroxy cellulose ether; the content of the polishing interface control agent is between 0.001 and 10 weight percent; the content of the surfactant is between 0.001 and 1 weight percent; the content of the chelating agent is between 0.001 and 1 weight percent; the content of the alkaline compound is between 0.001 and 10 weight percent; the balance being water; and the PH value is between 8.5 and 12. The polishing interface control agent can control a polishing interface between abrasive particles and a polishing object in the chemical mechanical polishing process in order that the surface of the polished silicon wafer is more perfect. The polishing composition is in particular suitable for polishing the silicon wafer and has the advantages of rapid polishing speed, little surface defect and high planeness; and the polished silicon wafer has few metal ion contaminants and is easy to clean.
Owner:TSINGHUA UNIV +1

Substrate supports for semiconductor applications

This invention relates to substrate supports, e.g., coated electrostatic chucks, having a dielectric multilayer formed thereon; dielectric multilayers that provide erosive and corrosive barrier protection in harsh environments such as plasma treating vessels used in semiconductor device manufacture; process chambers, e.g., deposition chambers, for processing substrates; methods for protecting substrate supports; and methods for producing substrate supports and electronic devices. The dielectric multilayer comprises (a) an undercoat dielectric layer comprising a metal oxide or metal nitride formed on a surface; and (b) a topcoat dielectric layer comprising a metal oxide formed on the undercoat dielectric layer. The topcoat dielectric layer has an aluminum oxide content of less than about 1 weight percent. The topcoat dielectric layer has a corrosion resistance and / or plasma erosion resistance greater than the corrosion resistance and / or plasma erosion resistance of the undercoat dielectric layer. The undercoat dielectric layer can have a resistivity greater than the resistivity of the topcoat dielectric layer. The topcoat dielectric layer can have a dielectric constant greater than the dielectric constant of the undercoat dielectric layer. The undercoat dielectric layer can have a porosity greater than the porosity of the topcoat dielectric layer. The invention is useful, for example, in the manufacture and protection of electrostatic chucks used in semiconductor device manufacture.
Owner:FM INDS

Sc-2 based pre-thermal treatment wafer cleaning process

Pre heat-treatment processing of a silicon wafer to grow a hydrophilic oxide layer includes an initial step of contacting the wafer with a pre-clean SC-1 bath, thereby producing a silicon wafer surface that is highly particle free. After a deionized water rinse, the wafer is scoured with an aqueous solution containing hydrofluoric acid and hydrochloric acid to remove metallic-containing oxide from the wafer surface. In order to grow a hydrophilic oxide layer, an SC-2 bath (containing hydrogen peroxide and a dilute concentration of metal-scouring HCl) is used. The resulting hydrophilic silicon oxide layer grown on the surface of the silicon wafer using the combined SC-1->AF / HCL->SC-2 wafer cleaning process has a metal concentration no greater than 1x109. The diffusion length of minority carriers is increased from a range on the order of 500-600 microns to a range on the order of 800-900 microns.
Owner:INTERSIL CORP

Catalyst multistage regeneration method and device

InactiveCN101391234AIncreased average chemical kinetic speedPromote regenerationCatalyst regeneration/reactivationRegenerative processLine tubing
The invention introduces a catalyst multi-section regeneration method and an apparatus, firstly, a spent catalyst enters a first section regenerator, and is in contact reaction with oxygen-containing gases in the first section regenerator, a second section regenerator and a third section regenerator sequentially, oxygen-containing regeneration flue gas of the first section enters the second section for continuous utilization, and the fresh compressed air is input to the third section for regeneration reaction, so as to complete the whole regenerative process. The fresh compressed air can also be supplemented to the first section regeneration reaction or the second section regeneration reaction, and the catalyst can also reflux to other sections for regeneration. The regeneration apparatus is composed of a first section turbulent bed regenerator, a second section turbulent bed regenerator and a third section turbulent bed regenerator in series connection, a distribution plate or a baffle and a catalyst standpipe are arranged, and all the regenerators are in coaxial arrangement. The invention adopts the multi-section counter-current regeneration, increases the average chemical kinetics speed, strengthens the regenerative process, saves the oxygen-containing gas usage, and reduces the production expense; and realizes the feeding of the spent catalyst from the bottom part or the middle part of each regenerator, lowers the height of the corresponding catalytic conversion device, shortens the oil-gas pipe-line, and reduces the construction investment.
Owner:QINGDAO JINGRUN PETROCHEM ENG

Apparatus for ion implantation

An ion implantation apparatus comprises an ion source section (18) for generating ions; an ion implantation section (14) for implanting the ions generated in the ion source section (18), in a substrate (92); a charged particle generator (62) for generating charged particles having a charge opposite to that of the ions; a beam guide section (24) having an inlet aperture (24a) for accepting the ions from the ion source section (18), an outlet aperture (24b) for delivering the ions into the ion implantation section (18), a guide tube (24c) extending from the inlet aperture (24a) to the outlet aperture (24b), and an introducing section (80) having an opening (82) thereof in an internal surface (24d) of the guide tube (24c), for introducing the charged particles from the charged particle generator (62) into the guide tube (24c); and a shield section (84) located between the opening (82) of the introducing section (80) and the outlet aperture (24b) inside the guide tube (24c). A shield surface (84a) of the shield section (84) blocks the charged particles' reaching the wafer.
Owner:APPLIED MATERIALS INC

Method for manufacturing SIMOX wafer

InactiveUS20060228492A1Reduce metal contaminationEnhance dielectric withstand voltagePolycrystalline material growthAfter-treatment detailsBuried oxideHigh oxygen
In the method for manufacturing a SIMOX wafer, oxygen ions are implanted into a silicon wafer, then the silicon wafer is subjected to a prescribed heat treatment so as to form a buried oxide layer in the silicon wafer. The prescribed heat treatment includes: a step of ramping up a temperature of the silicon wafer in a low oxygen partial pressure gas atmosphere having an oxygen partial pressure ratio of less than 5%; either or both of a step of oxidizing the silicon wafer in a high oxygen partial pressure gas atmosphere having an oxygen partial pressure ratio of 5% or more and a step of annealing the silicon wafer in a low oxygen partial pressure gas atmosphere having an oxygen partial pressure ratio of less than 5%; and a step of ramping down the temperature of the silicon wafer in a low oxygen partial pressure gas atmosphere having an oxygen partial pressure ratio of less than 5%. A hydrogen chloride gas is mixed with the low oxygen partial pressure gas having an oxygen partial pressure ratio of less than 5% in at least one step from among the ramp-up step, the anneal step and the ramp-down step.
Owner:SUMCO CORP

Chemical mechanical polishing slurry composition including non-ionized, heat activated nano-catalyst and polishing method using the same

ActiveUS7887715B1Reduce contamination levelLow metal contaminationNanostructure manufactureOther chemical processesNano catalystChemical-mechanical planarization
Disclosed herein are a chemical mechanical polishing slurry composition for chemical mechanical planarization of metal layers, which comprises a non-ionized, heat-activated nano-catalyst, and a polishing method using the same. The polishing slurry composition comprises: a non-ionized, heat-activated nano-catalyst which releases electrons and holes by energy generated in a chemical mechanical polishing process; an abrasive; and an oxidizing agent. The non-ionized heat-activated nano-catalyst and the abrasive are different from each other, and the non-ionized, heat-activated nano-catalyst is preferably a semiconductor material which releases electrons and holes at a temperature of 10 to 100° C. in an aqueous solution state, more preferably a transition metal silicide selected from the group consisting of CrSi, MnSi, CoSi, ferrosilicon (FeSi), mixtures thereof, and most preferably, a semiconductor material such as nano ferrosilicon. The content of the content of the non-ionized, heat-activated nano-catalyst is 0.00001 to 0.1 wt % based on the total weight of the slurry composition.
Owner:DONGJIN SEMICHEM CO LTD

Pipeline device for high-density plasma stock

InactiveCN105390363AReduce metal pollution problemsAvoid legacyElectric discharge tubesMetal pollutionCorrosion
The invention discloses a pipeline device for a high-density plasma stock. An NF3 gas for cleaning a cavity and an NF3 gas for participating in an etching process respectively adopt an independent first branch pipe and a second branch pipe to enter the cavity, the NF3 gas for participating in the etching process can directly enter the stock cavity without through a remote plasma system, and thus, the fact that during an STI etching process, due to corrosion of the NF3 gas for participating in the etching process, metal elements are left in the inner cavity of the remote plasma system can be avoided, and metal pollution problems caused by metal element over specification during the STI etching process can be reduced.
Owner:SHANGHAI HUALI MICROELECTRONICS CORP

Method of manufacturing semiconductor substrate

A method of manufacturing a semiconductor substrate, in which a silicon layer is provided on a buried oxide film, includes preparing a base substrate having a seed layer of the silicon layer on the buried oxide film with a film thickness equal to or more than 1 nm and equal to or less than 100 nm, and epitaxially growing the seed layer at a temperature equal to or more than 1000° C. and equal to or less than 1300° C. so as to form the silicon layer with a film thickness equal to or more than 1 μm and equal to or less than 20 μm.
Owner:SUMCO CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products